
Chapter V

Binary logic circuits

Computer systems are built from binary logic circuits: circuits in which each
signal has only two allowed values, 0 and 1, represented by two different
voltages on a wire, measured relative to a reference “ground” voltage. It is
possible to build simple computers using analogue circuits, where the voltage
on a wire is directly proportional to a continuous value to be computed with.
A major problem with that approach is that all wires in an electronic circuit
pick up rapidly varying noise, which alters the voltage on the wire. In an
analogue circuit, that changes the value represented, causing errors in the
calculation. In a digital circuit, as long as the noise voltage is small compared
to the difference between the voltages which represent 0 and 1, the intended
0 or 1 value on the wire can still be distinguished without error.

There are two kinds of binary logic circuits: combinational and sequential.

V.1 Combinational logic circuits

A general logic circuit has a number of inputs and a number of outputs,
each of which is a binary logic signal. In a combinational logic circuit, the
values of the outputs depend only on the current values of the inputs. The
circuit has no memory, and the output does not depend on the history of the
inputs.

The simplest combinational logic circuit has one input and one output,
and the only interesting circuit of this type is the inverter (sometimes called
a “not gate”), whose output is the inverse of its input. When the input is 0,
the output is 1, and vice versa.

Two-input/one-output circuits are a little more interesting. These include
the 2-input AND gate, whose output is 1 only if both inputs are 1, and the
OR gate, whose output is 1 if either or both inputs are 1. The output of a
NAND gate is the inverse of that of an AND gate, and similarly a NOR gate
produces the inverse of an OR gate. All these gates can be made with more
than two inputs; for example a 4-input NOR gate has a single output, which
is 1 if all the inputs are 0, and 0 otherwise.

NAND and NOR gates are called universal gates because they can realise
any logic operation when connected appropriately. For example, to create
an inverter from a NAND gate, one only needs to set the unused input(s) to
logic 1.

33

34 Binary logic circuits [Chapter V

A useful notation for describing, and reasoning about, combinational logic
circuits is the notation of Boolean algebra. Boolean algebra deals with vari-
ables that have two possible values, false and true (or 0 and 1). The Boolean
notation for an AND function of two values a and b is a.b (alternatively
a ∧ b), and for the OR of a and b, the notation is a + b (alternatively
a∨b). The inverse of a value is represented by placing a bar over the value’s
notation, for example a. A 3-input NAND gate with inputs a, b and c, and
output z can be described as z = a.b.c

One of the simplest combinational circuit used in a processor is the two-
input multiplexer; it selects between two 1-bit inputs, steering one of themMultiplexer

to its 1-bit output. A one-bit control input determines which 1-bit value is
selected.

A general way to specify the function of a combinational logic circuit
is using a truth table, which lists the value of the output(s) for all possibleTruth tables

values of the inputs. The truth table for a n-input circuit will have 2n rows.
The truth table for a two-input multiplexer is as follows. i0 and i1 are

the two data inputs, c is the control input, and z is the output. The output
takes the value of i0 if the control input c is 0, and takes the value of i1 if c

is 1.
i0 i1 c z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

By looking at the rows in the truth table where the output is a 1, it is
possible immediately to write down a Boolean expression for the output of
the circuit:

z = i0.i1.c + i0.i1.c + i0.i1.c + i0.i1.c

Each of the four AND terms in this expression (e.g. i0.i1.c) has the value
1 only for inputs corresponding to a single line in the truth table. There
are four AND terms, one for each line in the truth table where the output
is 1, and so the full output is obtained by ORing these terms together. This
expression gives us a circuit for the multiplexer, consisting of three inverters
to generate i0, i1 and c, four three-input AND gates to generate the AND
terms, and a four-input OR gate to OR together the outputs of the AND
gates.

§ V.1] Combinational logic circuits 35

However, the Boolean expression above can be simplified by noting that
i0.i1.c+i0.i1.c = (i0+i0).i1.c = i1.c and i0.i1.c+i0.i1.c = i0.(i1+i1).c = i0.c,
so z = i1.c + i0.c. This is as expected, since if c is 0, z is only 1 if i0 is 1,
while if c is 1, z is 1 if i1 is 1. This simpler Boolean expression represents a
circuit consisting of one inverter, two 2-input AND gates, and a 2-input OR
gate.

Both of these Boolean expressions for the multiplexer circuit are in “sum
of products” form; that is, they consist of a number of AND terms ORed
together. The simpler expression is the simplest possible sum of products
expression for this particular truth table, and represents a good circuit for
this function. Sum of products circuits are suitable for many combinational
logic functions. They have the advantage that they can be generated directly
and automatically from any truth table, and then simplified to the minimum
number of, and simplest possible, AND terms. There are logic simplification
algorithms which guarantee an optimal sum of products simplification, and
logic design software is available to do this. Unfortunately, the unsimplified
sum of products expression usually has of the order of 2n AND terms (where
n is the number of inputs to the function), and some functions do not simplify
well. In those cases, a sum of products circuit uses far too many gates, and
a more complex and more inspired design must be used instead.

V.1.1 Arithmetic circuits

Since numbers can be represented in binary and we have circuits available
which operate on binary values, we can build circuits which perform arith-
metic operations. An adder is a very common building block in processors,
so we will examine how one can be designed.

Unfortunately, the adder is an example of a circuit for which a sum of
products design is not suitable. A 32-bit adder has 64 inputs and 33 outputs.
The least significant output bit depends only on the least significant bit of
the two input numbers, but the most significant output bit depends on all
32 bits of each input number; it requires a logic circuit with 64 inputs.

A 32-bit adder circuit can be based on a circuit, called a full adder, which
adds three one-bit values to produce a two-bit result consisting of a sum bit
and a carry bit. The truth table is as follows:

36 Binary logic circuits [Chapter V

a b c carry sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Using sum of products design we get the following expressions for the outputs:

sum = a.b.c + a.b.c + a.b.c + a.b.c

which cannot be simplified, and carry = a.b.c+a.b.c+a.b.c+a.b.c, which
simplifies to:

carry = b.c + a.c + a.b

A 32-bit adder can now be made by chaining together 32 full adders, with
the carry output of each connected to the c input of the next (the c0 input
is usually just fed with 0):

S31 S0S1S2

C0

ADDER
FULL

B31A31 A2 B2 B1A1 B0A0C1C2
C31

C3C32

Figure V.1: Ripple carry adder.

V.1.2 Propagation delays

Real gates do not operate instantaneously. There is a propagation delay
after an input changes, before the new input is reflected in the output value.
The propagation delay of a gate depends on factors such as the design of the
transistors in the gate, and on the number of subsequent gate inputs fed by
the gate’s output. The propagation delay for a simple gate is less than 100ps
(1ps = 1 picosecond = 10−12s) in current manufacturing technologies.

Since everyone wants their computer to go as fast as possible, designing
logic circuits to have minimum propagation delay is very important in com-Longest path deter-

mines the speed puter design and the key to this is to minimise the number of gates an input
change must propagate through to reach the output of a circuit.

§ V.2] Sequential Logic Circuits 37

In the above adder circuit, for example, the longest path from an input
to an output is 65 gates long: from the least significant bits of the two input
numbers, along the chain of carries, through an AND and an OR gate in each
of 31 full adders, and then through an inverter, an AND and an OR gate in
the most significant full adder, to generate the output bit s31. The output of
the 32-bit adder cannot be relied on to be correct until 65 gate delays after
the two input numbers are presented.

This particular type of adder is known as a ripple carry adder , because
of the way the carries ripple relatively slowly along the chain of full adders.
If such a circuit was used in a real processor datapath, it would certainly
be the limiting factor on the clock speed, and would slow the processor
down significantly. In fact, adders can be made much faster by adding extra
circuitry to speed up the rate at which the carries pass along the chain, but
this is beyond the scope of this course.

V.2 Sequential Logic Circuits

In a sequential logic circuit, the outputs depend not just on the current
values of the inputs, but also on past values of the inputs. The circuit has
memory. Sequential circuits can do two things that combinational circuits
cannot: they can recognise sequences of inputs and they can generate se-
quences of outputs.

A sequential logic circuit is made by adding feedback to a combinational
logic circuit:

COMBINATIONAL

LOGIC

Figure V.2: Sequential logic.

In this circuit, depending on the design of the combinational logic, the
value on the output will depend both on the two inputs from the outside
world, and the on internal feedback signal. With one feedback signal, the
circuit can have two behaviours for any particular values of the inputs from

38 Binary logic circuits [Chapter V

the outside world: one with the feedback signal = 0, and one with the feed-
back signal = 1. The circuit then has two states, with different behaviours.
A circuit with two feedback signals can have up to four different states, and
one with n feedback signals, up to 2n states. The state of the feedback sig-
nals at any time in such a circuit will, in general, depend on the sequence of
earlier inputs: this is how the circuit remembers past inputs.

As a concrete example, consider the circuit in figure V.3, the SR latch,SR-Latch

made of two 2-input NOR gates, which is the simplest interesting sequential
circuit. When the two inputs S and R are both 0, the circuit has two states,
with the output Q equal to either 0 or 1. Both states are stable (work out
the logic level on each internal signal to see this). Which state the circuit is
in when S = R = 0 depends on the values on S and R immediately before
they were both 0. For example, if S is 1 and R is 0, the output Q must be 1.
If S then changes to 0, the output Q remains 1. On the other hand, if S is 0
and R is 1, the output Q must be 0, and if R then changes to 0, the output
Q remains 0 (again, working out the logic levels on each signal will confirm
this).

SR LATCH

Q

S

R

Figure V.3: The Set-Reset latch circuit.

The SR latch is used as a one-bit storage element. Most of the time, S
and R are both kept at 0, and the latch is storing a bit, 1 or 0, which is
available on Q. To set the stored bit to a 1, make a short 0→1→0 pulse on
the S input. To reset the stored bit to a 0, make a short 0→1→0 pulse on
the R input.

V.2.1 Synchronous sequential logic

The circuits considered so far are examples of asynchronous sequential
logic circuits. In an asynchronous circuit, the state of the circuit, i.e. the
value on the fed back signal(s), can change at any time in response to an input
change. Asynchronous circuits are tricky to design, and so most sequential

§ V.2] Sequential Logic Circuits 39

logic circuits are designed in a different way, as synchronous circuits. In
a synchronous sequential logic circuit, changes of state are only allowed to
happen at times synchronised to a special timing signal, called the clock,
which is connected to all storage elements.

The simplest synchronous circuit is again a one-bit storage element, called
a D flip-flop. The symbol for an edge-triggered D flip-flop is shown in fig-
ure V.4. In this flip-flop, the stored state Q only changes when the clock
input makes a rising edge, i.e. a transition from 0 to 1. When that happens,
Q takes on the value on the input D. At all other times, D is ignored and Q
does not change.

We can now make a register used in a 32-bit processor simply by putting
together 32 of these flip-flops, with the 32 clock inputs connected together to
form a single register load control signal. The symbol for a four-bit register
is shown in figure V.4. A new value is loaded into the register when the clock
makes a rising edge.

Q0

Q1

Q2

Q3D3

D2

D1

D0

CLOCK

Q

CLOCK
4−BIT REGISTER

D

FLIP−FLOP

EDGE−TRIGGERED

Figure V.4: D flip flop and 4-bit register.

A more general synchronous sequential logic circuit looks like this:
The feedback signals have a register placed in them, the state register.

Changes on the inputs to the circuit change the next state signals, that feed
the D inputs of the state register, but the actual state of the circuit, as fed
back into the combinational logic from the Q outputs of the state register,
will only change when the clock makes a rising edge. The usual way to use
such a circuit it to have the clock pulsing regularly, so that the state updates
at regular intervals, on each rising edge of the clock.

V.2.2 A hardware FSM

Inf1A, Computation and Logic describes how a (deterministic) Finite
State Machine (FSM) takes in a sequence of input symbols, and determines
whether the sequence is accepted or rejected. A sequential circuit is essen-
tially an FSM. We will design the control logic of a simple vending machine

40 Binary logic circuits [Chapter V

Q2
Q1
Q0 D0

D1
D2 SIGNALS

STATE
NEXTCURRENT

STATE
SIGNALS

REGISTER
STATE

COMBINATIONAL

LOGIC

INPUTS OUTPUTS

CLOCK

Figure V.5: Generic synchronous sequential circuit.

as an example.
Our vending machine accepts 10p and 20p coins (one at a time) and only

sells one kind of chocolate bar which costs 30p. No change is given and only
one chocolate can be bought at one time.

The machine has a sensor which detects what type of coin is paid in and
has two outputs: a which is asserted when a 10p coin is detected and b,
which is asserted when a 20p coin is detected. One chocolate is released
when the signal z is asserted.

S0 S1

S2 S3

00 00

00

10

10

10

01

0101 xx/1

Figure V.6: Vending machine FSM.

Figure V.6 shows the state diagram of the machine. The initial state is
S0, where no money has been paid into the machine. When the balance is

§ V.2] Sequential Logic Circuits 41

10p, the machine is in state S1. When the balance is 20p, the machine is in
state S2. When the balance is 30p or more, the machine is state S3, asserts
the output z to logic 1 and immediately returns to S0, to be ready for the
next transaction.

Since there are four states, we need 2 bits to encode the current state: s1,
s0. There are many ways to encode the states S0 – S3, but to keep things
simple, we assume that S0 is represented as 00, S1 as 01,. . .

The sequential circuit implementing this FSM will look similar to the
machine of figure V.5. The circuit is started in the state corresponding to
the FSM start state, S0 (00) and the input sequence is presented on the
inputs to the circuit, one per clock cycle. The circuit moves between states,
one state transition per clock cycle. In this particular type of FSM, called
Moore machine, the output signal depends only on the current state, not on
the inputs.

In order to build the sequential circuit, we need to generate the boolean
expressions for the output z and the next-state signals s ′

1, s ′

0. Here is the
combined truth table:

Current state 10p 20p Next state
s1 s0 a b s ′

1 s ′

0 z

0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 0 1
0 1 0 0 0 1
0 1 0 1 1 1 0
0 1 1 0 1 0
1 0 0 0 1 0
1 0 0 1 1 1 0
1 0 1 0 1 1
1 1 0 0 0 0
1 1 0 1 0 0 1
1 1 1 0 0 0

Note that the values for z are shown once per input state, because it
depends only on the current state, not on the values of the inputs a, b.
From the table we can extract the boolean expressions for all outputs and
then build circuits as we did for the multiplexer.

The above procedure can be followed for generating a sequential circuit
from a state diagram and is automated by computer design tools. When
we will be looking at the control logic of the processor (the multicycle and
pipelined versions), you should keep in mind that they are implemented by
a form of FSM.

42 Binary logic circuits [Chapter V

