
Chapter III

Instructions and assembly programming

III.1 Instruction-set architecture: the hardware-software interface

Processor instructions define the most important hardware-software interface:
software programs use the processor instructions to carry out arbitrary data
processing, while electronic circuits interpret those instructions and perform
the requested actions in hardware. The instruction set abstracts away the details
of the hardware in much the same way as an object in a high-level programming
language hides its internal operation from its users.

There are potentially many ways to define this hardware-software interface
depending on how much ‘work’ the hardware is allowed to perform on its own
in order to carry out the actions required by an instruction. Different brands
of processors have different instruction sets because their designers have made
different decisions about this hardware-software boundary. Instruction sets are
often classified into two groups: RISC (reduced instruction set computer) and
CISC (complex instruction set computer).

A single program statement such as a = b + c; might compile to one CISC
instruction, but to several RISC instructions. Compiled programs for CISC
machines are therefore smaller. For that reason, CISC ruled the roost in the
70s when memory was expensive to built and, thus, limited in size. However,
as memory got cheaper, and the compiler technology evolved, the advantages
of CISC disappeared. Because RISC instructions are simpler, RISC processors
are easier to design – very important in the competitive processor market. De-
spite compiled programs containing more instructions, RISC machines often
run faster too, as the simple instructions execute very fast. For that reason, new
processor designs are RISC designs. The big exception of course is the Intel
80X86 architecture used in the PC. Dating from the 70’s, and still in use, the
Intel architecture (IA32) is the only general purpose CISC design still around.

Recall that instructions (and data) are represented as binary numbers. Al-
though using the hex equivalent would be shorter, a numerical representation
would still be very tedious to use. Therefore a symbolic representation of in-
structions was developed and this symbolic language is called assembly language.
Note that there is a one-to-one correspondence between assembly instructions
and machine instructions, unlike high-level languages in which a single state-

11

12 Instructions and assembly programming [Chapter III

ment corresponds to a number of machine instructions1.

For this course, the MIPS instruction set will be used, which is typi-
cal of a RISC processor. There is a separate handout with the MIPS in-
struction subset that we will use for this course. The full instruction set
can be found in the appendix A of the textbook, which is also available at
http://www.cs.wisc.edu/~larus/HP_AppA.pdf.

III.2 Some basic instructions

Computers were created to do calculations, therefore all computers have in-
structions to perform basic arithmetic operations. For example add a, b, c is
the MIPS instruction that adds variables b, c and stores the result to a. Similarly
sub a, b, c calculates b− c and stores the result to a.

The above examples use the symbolic, assembly, representation of MIPS in-
structions; we will examine the binary representation of instructions later. In
general MIPS arithmetic and other operations are of the form: “operation type”
“destination variable”, “first operand”, “second operand”. The distinction be-
tween first and second operand can be important for (non-commutative) opera-
tions such as subtraction.

Note that only two operands are allowed in MIPS (and most other proces-
sor) instructions. To perform more complex arithmetic operations multiple in-
structions are required and, sometimes, temporary variables hold intermediate
results. For example to compute x=(a+b)-(c+d), the following program would
be used2:

add t0, a, b # add a to b, store to t0
add t1, c, d # add c to d, store to t1
sub x, t0, t1 # Subtract t1 from t0, store to x

Although computers usually operate on full words, sometimes specific bits
or bit fields need to be extracted. In order to perform these tasks, processors
include instructions that perform logical operations and shifts. MIPS provides
and, or, nor and xor instructions, which perform the AND, OR, NOR, XOR
logical operation on a bit-by-bit basis, respectively.

There are two main types of shift operations: shift left logical,
sll a, b, shamnt and shift right logical, srl a, b, shamnt. The first stores
to a the result of shifting b to the left by as many bits as shamnt, a constant,
defines. srl does the same in the opposite direction. Recall the distinction be-
tween arithmetic and logical shift right from the previous chapter.

1Modern assembly languages sometimes define pseudo-instructions that get translated to one
or more real instructions.

2In MIPS assembly, # starts a comment which continues to the end of the line.

§ III.2] Some basic instructions 13

III.2.1 Registers

Most processors place restrictions on which operands can be used in instruc-
tions and where the results can be stored. Nearly all RISC processors, incl.
MIPS, allow their instructions to operate on (and store the results to) registers
only. Registers are storage locations inside the processor which hold program
variables. The size of a register (in bits) is equal to a word and the total number
of registers is relatively small (32 for MIPS).

In view of the above, when writing assembly programs we use only regis-
ter names instead of arbitrary variable names, as above. Although nearly any
register can be used for any purpose, most MIPS programs follow the following
convention: registers $s0, $s1,. . .$s7 correspond to variables in C and Java
programs, while temporary variables use registers $t0,. . .$t9. There are other
registers with special roles which we will see later. For full details, consult fig-
ure A.6.1 (A.10 in 2nd edition) of appendix A of the textbook (also available
on-line).

Note that the registers are ‘visible’ to the programmer, therefore constitute
part of the hardware-software interface. Peculiar to MIPS, one register, $zero
or $0, is hardwired to 0, so MIPS ends up having only 31 registers available to
programs. Of course the names given above to these registers are still symbolic
names. The actual registers are simply numbered from 0 to 31 (i.e. 5 bits are
enough to address them) and there is a well-known correspondence between the
symbolic names and the register numbers. You can find this correspondence in
the “MIPS reference data" handout, which comes from the course text book.

In addition to these general purpose registers, there is another register which
is not directly accessible but essential for the operation of a processor. It is called
the program counter or the PC for short and points to the current instruction
that is being executed by the processor. We will see control transfer instructions
that change the PC and therefore the program flow, later on.

III.2.2 Immediate operands

Sometimes one of the operands to an arithmetic operation is a constant
known at compile time, for example when compiling i++;. The MIPS provides
versions of the arithmetic instructions to support this, for example the add im-
mediate instruction addi r1, r2, n. This adds the constant value n, encoded
as part of the instruction itself, to the value in register r2 and stores the result in
register r1. n can be positive or negative and it is sign-extended to 32 bits before
the addition. There are immediate types for the and, or and nor instructions
too.

The addi instruction can also be used to load a small constant into a register,

14 Instructions and assembly programming [Chapter III

using addi r1, $0, n, because register 0 always contains 0. What if we need to
load a full 32-bit value into a register? MIPS provides an instruction load upper
immediate, lui r, n, which loads the top half of register r with the 16-bit value
n, setting the bottom half of r to 0. The bottom half of the required 32-bit
constant can then be added in with an ori instruction.

MIPS provides a convenient pseudoinstruction that does the above job. Sim-
ply write li reg, immediate; it gets translated to either one or two real MIPS
instructions, depending on how many bits long the immediate is.

III.3 Getting at the data

Most programs use a lot more than the 32 variables a MIPS processor can
store in its registers. Variables in a program are therefore stored in memory, not
registers. But the MIPS, like most RISC processors, does not have instructions
that do arithmetic operations on values stored in memory (CISC processors do
usually have such instructions). The MIPS requires values to be loaded from
memory into registers before they are operated on, and the result to be stored
back into memory afterwards. RISC architectures are some times called load-
store architectures for this reason.

In an object-oriented language, most variables are likely to be object instance
variables – each object has its own copy of such variables. An object will be
stored as a chunk of memory containing all its instance variables. This chunk
of memory is set up when the object is constructed, i.e. when a statement such
as obj1 = new MyClass(); is executed. This allocation of a chunk of memory
happens at run time, when the program is running, not at compile time – the
memory chunk is said to be dynamically allocated. In fact, running the same
program on different input may result in a different number of objects being
constructed in a different order.

What this means is that if a program accesses an instance variable of an ob-
ject, e.g. with an expression such as obj1.avar, the compiler cannot usually
know at what addresses in memory that particular object’s avar variable will
be stored when the program is running. What it does know however is that
the value obj1 is a 32-bit pointer, or reference, to the object containing the
variable wanted. This is because obj1 is set to point at the newly allocated
memory space for the object, wherever it might be, at the time the statement
obj1 = new MyClass() is executed.

So the compiler can generate code to load the value of obj1.avar into a
register by using code which accesses into the chunk of memory pointed at by
the value in obj1, without the compiler actually knowing what the value of that
pointer will be at run time.

The MIPS instruction that does this is called load word, and its symbolic

§ III.3] Getting at the data 15

form is lw $s1, n($s2). The effect of this instruction is to take the value in
register $s2 and add to it the constant value n, which is coded into the instruc-
tion, and then to use this as an address into memory, finally loading four bytes
from memory, from that address and the next three, into register $s1. The value
in $s2 is known as the base address, and n as the offset.

In our example, $s2 would first be loaded with the pointer to the object,
copied from the variable obj1. The constant n would be calculated by the com-
piler to be the correct number to offset into the object’s memory chunk so that
we fetch the variable avar rather than any of the object’s other instance vari-
ables: each variable is stored at a different offset into the whole memory chunk,
and the compiler knows these offsets as it knows what instance variables are
declared for this object and in what order.

The MIPS also has a store word instruction, sw $s1, n($s2), which stores
the integer in register $s1 into memory at the address $s2 + n. The instructions
that access the memory are collectively called data transfer instructions.

Now, our original statement a = b + c; can be implemented by the fol-
lowing code (assuming that register $s1 already points at a chunk of memory
containing the three variables):

lw $t0, boffset($s1)

lw $t1, coffset($s1)

add $t2, $t0, $t1

sw $t2, aoffset($s1)

Note that the offset can be positive or negative as were the immediates in the
arithmetic and logical instructions.

In most computer systems the memory is byte-addressable, i.e. each individ-
ual byte has a corresponding address. So, which one of the 4 bytes should be used
as the address of a 32-bit word? We could decide to allow words to be stored at
any byte address and use the address of the first byte as the word’s address. This
turned out to hinder the implementation of the memory sub-system, therefore,
in most processors including MIPS, words must start at addresses which are mul-
tiples of 4. This is called the memory alignment restriction.

byte
address

3 1 02

byte
address

byte0 byte1 byte2

4 6 75
word 4

Big Endian

0 21 3
byte3byte3 byte2 byte1 byte0

7 5 46
word 4

bit 31 bit 0

Little Endian

bit 31 bit 0

Figure III.1: Memory endianism.

16 Instructions and assembly programming [Chapter III

There are two ways to store a word in a byte-addressable memory (whether
aligned or not) depending on whether the least significant byte is stored at a
lower or higher address than the least significant byte. Figure III.1 (from “ARM
System Architecture”, Steve B. Furber, Addison Wesley, 1997) shows the two
cases. Note that in both cases a word is written with its most significant bit to
the left, the difference is at which end the byte address 0 starts from. If it starts
from the least significant end, the machine is called little endian (e.g. Intel x86),
otherwise it is called big endian (e.g. Sun SPARC).

III.4 Instruction formats

So far we have only seen the symbolic representation of instructions, but in
reality instructions are represented using bits. The layout of the binary repre-
sentation of an instruction is composed of fields of binary numbers (bit-fields)
and is called the instruction format.

The instructions of RISC processors have very rigid formats. For start all
the instructions are of the same bit length, equal to one word. The same format
and bit-fields are used for as many different instructions as possible. The rational
behind this rigidness is that it makes it easier (and faster) to build the circuits that
decode the instructions in order to perform the operations it commands.

The instructions we have seen so far use two formats: the R-format is used
by the arithmetic and logical instructions (add, or, . . .) and the I-format is used
by data transfer and the immediate instructions.

The fields of the R-format are:
31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct

opcode The basic operation of the instruction.

rs The first register operand. Zero for shift instructions.

rt The second register operand.

rd The destination register which stores the result.

shamt Shift amount for shift instructions. Zero for non shift instructions.

funct The specific function of the instruction.

The I-format looks like:

31 26 25 21 20 16 15 0

opcode rs rt immediate

§ III.5] Instructions for making decisions 17

opcode The basic operation of the instruction.

rs The first register operand for immediate instructions or the base register for
data transfer instructions.

rt The destination register for immediate and load instructions; the register to
be stored for store instructions

immediate A 16-bit 2’s complement constant used as an operand in immediate
instruction or as the offset for data transfers.

Opcodes and funct codes for MIPS instructions are given in a separate hand-
out: “MIPS reference data".

III.5 Instructions for making decisions

Programs which simply consist of a straight-line sequence of statements op-
erating on data are not very interesting. To be useful, programs need a way of
choosing which statements to execute, depending on data values. Java provides
a variety of statements to do this, including the if, switch, while, do and for

statements.
Let’s start with the java statement if (i != j) thenStmnt else elseStmnt.

The MIPS provides a conditional branch instruction which can be used to imple-
ment the control choice here. The beq r1, r2, label instruction compares
the values in the two registers r1 and r2, and if they are equal, transfers con-
trol to the instruction labelled label, otherwise control proceeds to the next
instruction in sequence. There is also a related instruction bne r1, r2, label

which branches if the values in r1 and r2 are not equal.
The beq and bne instructions follow the I-format and the 16-bit immediate

field of the instruction contains the branch offset, that is, the distance to branch
to reach label, in 32-bit words, from the instruction following the beq. This 16-
bit number is multiplied by 4, to turn it into a word offset3, then sign-extended
and added to the Program Counter if the branch should be taken.

Our if statement could be implemented as follows, assuming the variable i
is in register $s1, and j in register $s2:

beq $s1, $s2, L1 # branch if i and j are equal

thenStmnt
L1: elseStmnt

3Recall that instructions are words, therefore aligned at byte addresses which are multiples
of 4.

18 Instructions and assembly programming [Chapter III

There is actually a mistake in the above program; it is not a correct trans-
lation of the Java statement. The problem is that after the thenStmnt is ex-
ecuted, elseStmnt will also be executed if the condition was true. To correct
this we must add an instruction following the thenStmnt which unconditionally
branches over the elseStmnt. MIPS provides the jump instruction for this pur-
pose, j label, which transfers control to the instruction labelled label. The
correct translation of the above Java statement can now be expressed as:

beq r1, r2, L1 # branch if i and j are equal
thenStmnt
j L2 # an unconditional branch

L1: elseStmnt
L2:

The jump instruction has a different format to the instructions we have seen
so far; it does not use any registers for operands or to store a result. This format
is called the J-format:
31 26 25 0

opcode address

The 26-bit address field defines the target of the jump. A minor detail here is
that the remaining 4 bits of the target address come from the upper 4 bits of the
PC. This is an example of an absolute jump instruction, where the instruction
contains the actual address of the destination4. In contrast, the branch instruc-
tions are relative branches; the instruction contains a positive or negative offset
to the destination of the branch.

The loop while (count != 0) stmnt can be implemented as follows, as-While loops

suming that the variable count is kept in register $s1:
loop: beq $s1, $zero, end # branch out of loop if count == 0

stmnt
j loop # unconditional branch to loop test

end:

If the expression in the loop test contains boolean variables, these can easily
be handled, assuming they are stored in bytes (or words) with value 1 (true)
or 0 (false). For example, the loop while (flag1 && flag2) stmnt would
become (assuming the variables flag1 and flag2 are kept in registers $s1 and
$s2 respectively):
loop: beq $s1, $zero, end # branch if flag1 is false

beq $s2, $zero, end # branch if flag2 is false
code for stmnt
j loop # unconditional branch to loop test

end:

4Well, almost!

§ III.6] Method calls 19

The beq and bne instructions are fine for comparing two values for equality,
or a value for equality with 0, but what about more complex arithmetic com-
parisons? The MIPS has an instruction set if less than, whose mnemonic form Comparisons

is slt r1, r2, r3, the effect of which is to set register r1 to 1 if the value in
r2 is less than the value in r3 and to set r1 to 0 otherwise. In other words it re-
turns the boolean value r2 < r3 in r1. For example, the loop while (i > j)

stmnt can be implemented (assuming i and j are kept in registers $s1 and $s2

respectively):
loop: slt $t0, $s2, $s1 # put the boolean value i > j in $t0

beq $t0, $zero, end # branch if that value is false
stmnt
j loop # an unconditional branch

end:

There are a number of branch on . . . and set if . . . instructions in MIPS to
simplify translation of high-level language boolean expressions and conditional
statements into assembly code.

III.6 Method calls

A different kind of control transfer takes place when a method is called. The
key point here is that the same method can be called from many different places
in a program, and each time, we need to return to the statement after the method
call when the method is complete. We need a way to remember from where we
transferred control to the method.

The MIPS provides an instruction called jump and link to do this. Its
mnemonic form is jal label, and its effect is to save the address of the fol-
lowing instruction in register $ra (r31), and to unconditionally transfer control
to the instruction labelled label. This instruction uses the J-format and the
target address is calculated in the same way as with the jump instruction above.

When the jump and link instruction is used to call a method, we then need
an instruction to return from the method. The jump register instruction does
this. Its mnemonic form is jr r1, and it simply sets the Program Counter to
the value in register r1. We can now return from a method by using $ra.

III.6.1 Using a stack for method calls

What happens if we have nested method calls, i.e. we call one method, which
then calls another? The jump and link instruction implementing the second call
will put its return address into $ra, overwriting the return address for the first
method call. We need a way to keep the first return address safe while we call the
second method, and then put it back into $ra before we use a jr $ra instruction

20 Instructions and assembly programming [Chapter III

to return from the first method. If method calls are nested to several levels, we
will need to save a sequence of return addresses, restoring them into $ra at the
right times for the returns from each call.

Because the saved values are restored in the opposite order to which they
are saved, an obvious data structure to save them in is a stack5. We can push
each return address onto the stack as we arrive in a method and then pop it
off the stack back into $ra, before we return from the method with a jr r31

instruction.
A stack can be implemented as a block of memory words, which grows as

we push new words onto it, and shrinks as we pop words. Often, programs
use a stack which grows downwards in memory, so that each new word pushed
occupies an address 4 bytes lower than the previous word. One register in the
processor is usually set to point at the “top” of this stack, i.e. at the last word
pushed on it. Pushing the contents of $ra can then be implemented as follows,
using the notation $sp to represent the stack pointer register:

addi $sp, $sp, -4 # move stack pointer down by 4 bytes
sw $ra, 0($sp) # store $ra where the stack pointer points
Popping the value is done with:
lw $ra, 0($sp) # pop top of stack into $ra

addi $sp, $sp, 4 # move stack pointer up by 4 bytes
Method calls may use the stack for other things. For example the compiler

may compile a method so that it saves the contents of processor registers that
the method itself uses on the stack on entry to the method, and restores those
values before returning to the calling code. That way, as far as the calling method
is concerned, none of the registers are changed by the method call.

Most methods have parameters, the values passed into the method, and these
can be passed by the calling code either placing them in a few of the processor
registers (MIPS uses $a0,. . . , $a3 for this purpose), or, if there are too many pa-
rameters to fit in registers, placing them on the stack. In either case, the method
code can easily pick them up. If the method returns a value, that value can either
be returned in a register ($v0, $v1 for MIPS), or on the stack.

5See Inf1B, Object Oriented Programming, lecture on data structures.

