
Inf2C Computer Systems - 2013-2014 1

Lecture 2: Data Representation

§  The way in which data is represented in computer
hardware affects
–  complexity of circuits
–  cost
–  speed
–  reliability

§  Must consider how to design hardware for
–  Storing data - memories
–  Manipulating data – e.g. adders, multipliers

§  How would an algorithm for adding Roman numbers look like?

Inf2C Computer Systems - 2013-2014 2

Lecture outline

§  The bit – atomic unit of data
§  Representing numbers
§  Representing text

Inf2C Computer Systems - 2013-2014 3

The bit

§  Information represented as sequences of symbols
–  In text, symbols are letters, numerals, punctuation,

whitespace
–  With computers, we use just 0s and 1s, bits

§  Bit is an acronym for Binary digiT
§  Disadvantages: little information per bit, must use many

of them. 512 ≡ 1 0000 0000, ‘A’ ≡ 0100 0001
§  Advantages: easy to do computation, very reliable,

simple circuits

Inf2C Computer Systems - 2013-2014 4

Natural numbers representation

§  Non-negative (unsigned) integers are very simple
to represent in binary

n-1 Bit position
MSB

n-2 1 0
Binary:

Decimal: *2n-1+ *2n-2+ *21+ *20

LSB

Most significant bit Least significant bit

Inf2C Computer Systems - 2013-2014 5

Basic operations

 01101
+01011

00011

1 1 1 1

§  Addition, subtraction with binary numbers is
easy:

 01101
−01011

10000

0 1 0 0

13

11

24
2

Inf2C Computer Systems - 2013-2014 6

Fixed bit-length arithmetic

§  Hardware cannot handle infinite long bit
sequences

§  We end up with a few fixed sized data types
– Byte: always 8 bits
– Word: the ‘natural’ unit of access, usually 32 bits

§  Overflow happens when a result does not fit
– Numbers wrap-around when they become too large
– Comp. arithmetic is modulo 2n, n=number of bits

Inf2C Computer Systems - 2013-2014 7

What about negative numbers?

§  Sign-magnitude representation:
– Use 1st bit (MSB) as the sign: 1-negative, 0-positive

0110 ≡ 6 1110 ≡ -6

§  Complicates addition and subtraction
– The actual operation depends on the sign

§  There is a better way

Inf2C Computer Systems - 2013-2014 8

Two’s complement representation

§  If doing mod 2k arithmetic on numbers 0…2k-1,
treat numbers k…2k-1 as -k…-1

§  To find the value of a binary number, consider the
MSB as having negative weighting:

n-1 n-2 1 0
Binary:

Decimal: − *2n-1+ *2n-2+ *21+ *20

§  Arithmetic operations do not depend on the
operands’ signs

§  0110 ≡ 6 1110 ≡ -2

Inf2C Computer Systems - 2013-2014 9

2’s complement quirks

§  The MSB is the sign
§  Range is asymmetric: −2n-1 to 2n-1-1
§  There are two kinds of overflows:

– Positive overflow produces a negative number
– Negative underflow produces a positive number

§  To negate a number
Invert all bits (0 ↔ 1) and add 1, at the LSB
−(−2n-1) overflows!

§  A-B = A + 2’s complement of B

Inf2C Computer Systems – 2013-2014 10

Converting between data types

§  Converting a 2’s complement number from a smaller to
a larger representation is done by sign extension

Example: from byte to short (16 bits):

-2 = 11111110 ⇒ 1111111111111110

(byte) (short)

2 = 00000010 ⇒ 0000000000000010

(byte) (short)

-2 = 1 1 1 1 1 1 1 0 ⇒ ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 0

2 = 0 0 0 0 0 0 1 0 ⇒ ? ? ? ? ? ? ? ? 0 0 0 0 0 0 1 0

Inf2C Computer Systems - 2013-2014 11

Shifting

§  Shifting: move the bits of a data type left or right
–  Data bits falling off the edge are lost

§  0s fill up the empty bit places for left shifts
§  For right shifts, two options:

–  Fill with 0: for non-numerical data (or positive integers)
–  Fill with the MSB: for 2’s complement numbers

§  Shift left by n is equivalent to multiplying by 2n

§  Shift right by n is equivalent to dividing by 2n and
rounding towards -∞

§  Example
-6 = 1 1 1 1 1 0 1 0 >> 2 à 1 1 1 1 1 1 1 0 = -2

6 = 0 0 0 0 0 1 1 0 >> 2 à 0 0 0 0 0 0 0 1 = 1

Inf2C Computer Systems - 2013-2014 12

Hexadecimal notation

§  Binary numbers (and other data) are too long and
tedious for us to use

§  Hexadecimal (base 16) is very commonly used in
computer programming

§  Hex digits: 0-9 and A-F
–  A=10, B=11, …, F=15

§  Conversion to/from binary is very easy:
Every 4 bits correspond to 1 hex digit:

Hex is just a convenience, computers use the binary form

1 1 1 1 1 0 0 0

F(15) 8

= 0xF8

Inf2C Computer Systems - 2013-2014 13

Real numbers - floating point
§  Java’s

§  IEEE 754:
–  example 0.75 in base 10 ⇒ 0.11 in base 2

–  Normalized:
 0.11 ⇒ 1.1x2-1

–  example: 25 in base 10 ⇒ 11001 in base 2 ⇒ 1.1001x24

float (32 bits)
double (64 bits)

mantissa exponent

implict
(always 1)

(2-1 + 2-2 = 0.5 + 0.25 = 0.75)

Inf2C Computer Systems – 2013-2014 14

Floating Point
§  32 bit:

e.g.,
(0.75)10 → (0.11)2 → (1.1x2-1)2 → 0 01111110 10000000000000000000000

§  64 bit:
–  exponent = 11 bits; significand = 52 bits

§  Note: processors usually have specialized floating point units and
extra fp registers to perform fp arithmetic

31 30 22 0

sign
(s)

exponent
(exp)

mantissa or significand
(sig)

(-1)s x (1.sig) x 2exp-127

23

Inf2C Computer Systems - 2013-2014 15

Representing characters, strings

§  Characters need to be encoded in binary too
§  Operations on characters have simpler requirements

than on numbers, so the encoding choice is not crucial
§  Most common representation is ASCII

–  Each character is held in a byte
–  E.g. ‘0’ is 0x30, ‘A’ is 0x41, ‘a’ is 0x61

§  Java uses Unicode which can encode characters from
many (all?) languages
–  16 bits per character required

§  Words, sentences, etc. are just strings of characters
–  A special character, encoded as 0x00, shows where the string

ends (in C)
–  Or the string length is kept with the string itself (in Java)

Inf2C Computer Systems - 2013-2014 16

Summary

§  Computers use binary representation
§  2’s complement
§  Floating point
§  Characters and strings

