Lecture 1 Inf2C - Computer Systems: Course overview \& the big picture

Paul Jackson

School of Informatics
University of Edinburgh

Practicalities

- Lectures:
- Tue, Fri, AT LT3 @ 15:10-16:00
- Tutorials
- Start in Week 3
- Exam - 75\%
- In December; exact date not available yet.
- Coursework - 25\%, min cw mark: 25/100

1. Due Tue Week 6 (22 Oct)
2. Due Tue Week 10 (19 Nov)

- All material will be on course web-page: http://www.inf.ed.ac.uk/teaching/courses/inf2c-cs

Student representatives

- For Informatics Year 2:
- Daniel Gallagher (D.A.Gallagher-2@sms.ed.ac.uk)
- Connor Stuart (C.A.Stuart@sms.ed.ac.uk)
- Duties
- Point of contact for suggestions, complaints of general concern
- Attend a staff-student liaison meeting to discuss the above
- If you don' t tell us something is wrong we assume it's all going fine
- You might not want that

Late coursework

- School-wide consistent policy:

Normally, you will not be allowed to submit coursework late

- If you have a good reason to submit late, contact the ITO via their Support Form.
- The ITO will log the report and pass it on to the UG2 Course/Year Organiser (Colin Stirling)
- Only in exceptional circumstances (e.g., illness that stopped you getting to email), would an extension be granted after a deadline has passed
- See the online Undergraduate Year 2 Handbook for details

Good reason

Something that, in the judgement of the member of staff responsible, would prevent a competent, wellorganised, conscientious student from being able to submit on time. E.g.:

- Significant illness
- Serious personal problems
- Interviews/selection procedures, in some circumstances

Non-examples:

- Difficult cluster of deadlines

Last-minute computer problems, (your own) back up failure, ...

Syllabus Overview

- Hardware:
- Data representation and operations
- Processor organisation \& design of simple circuits
- Exceptions and interrupts
- The memory sub-system
- Input/Output
- Software:
- Low-level programming
- Operating systems basics
- Introduction to C programming (2 lectures)

Course activities

- Coursework

1. MIPS (Microprocessor without Interlocked Pipeline Stages) assembly programming
2. Implement the control unit of a simplified MIPS processor in system-C (To be confirmed)

- Drop-in labs:
- Demonstrators available to provide help
- Tutorials: Weeks 3,5,7,9
- Online discussion forum

Notes are provided, but you must read the book too

Books

- Patterson \& Hennessy: Computer Organization and Design, Morgan Kaufmann
-4 /e revised printing available
- Library has 2/e \& 3/e (both still OK) and 4/e ebook Worth buying if this is the only course on computer architecture/hardware you will ever take
- Silberschatz, Galvin, Gagne: Operating Systems Concepts, Wiley 9/e
- Library has 5/e and 7/e ebook
- Only a few sections needed for this course

Evolution of computers

- Early computers had their programs set up by plugging cables and setting switches
- John von Neumann first proposed to store the program in the computer's memory
- All computers since then (~ 1945) are storedprogram machines

Evolution of computers

- What has changed is the number of transistors (electronic switches) and their speed
- Implementation technology progressed from valves (tubes) to discrete bipolar transistors, MOS transistors, and Integrated Circuits (chips)
- At the same time, the cost per transistor has been dropping

Moore's Law

- Transistor counts roughly double every 18 to 24 months
- Intel 4004 (year 1971): 2300 transistors
- Intel Pentium IV (year 2000): 42,000,000 transistors 10,000x increase in 30 years!

Computer components

- Data path
- Performs actual operations on data
- Control path

- Fetches instructions from program in memory
- Requests operations on data from data path also in order
- Memory
- Stores data and instructions
- Input/Output
- Interfaces with other devices for getting/giving data

Types of computer systems

- Servers
- Fast processor(s), fast I/O
- Used for either few large tasks (engineering apps), or many small tasks (web server)
- Multi-user, multi-program
- Desktops
- The common PC
- Balance cost, processing power
- Single/multi-user, multi-program

Types of computer systems - 2

- Embedded:
- Computing not main purpose of the device
- Low-cost, low-power (for portable devices)
- Single user, usually single program, not user programmable
- Which is the largest category?
Embedded computers

Modern computer system

- Operating System (OS)

- Mediates access to hardware resources (CPU, Memory, I/O)
- Schedules applications
- Compiler
- Translates High Level Language (HLL) into machine language or byte code
- Virtual Machine (VM)
- Interprets and "executes" byte code

