
Inf2C Computer Systems

Coursework 2

MIPS Multi-cycle Processor Design

Deadline: Fri 22 Nov 2013, 16:00

Paul Jackson

1 Introduction

The aim of this practical is to increase your familiarity with the structure and operation of
a simple computer processor. It asks you to write and submit part of a SystemC program
which models the operation of a simple multicycle processor and memory system.

SystemC is a language for describing and simulating hardware designs. It is realised
as a library of C++ classes: hardware is described by C++ programs that use these library
classes, and simulations are run by compiling and executing these programs.

This course does not teach you SystemC, nor are you advised to learn it by yourselves
at this stage. We are merely using it as a simulation engine because it can effectively model
concurrent operations, closely mimicking the operation of real hardware. The code that
you are required to write will be plain C. The provided code will obviously use SystemC
features but you are not required to learn how it works. What you need to understand is
how simple computer hardware works, not the details of how to model it using SystemC.

Your answers should be submitted electronically before 4pm on Friday 22nd Novem-
ber (see later in this handout for details of how to do this). This is the second and last
practical for Inf2C Computer Systems course. It is worth 50% of the coursework mark for
Inf2C-CS and 12.5% of the overall course mark. Please bear in mind the guidelines on
plagiarism which are linked to from the Informatics 2nd Year Guide.

Before attempting this coursework, you have to go through the lab script called “Sys-
temC Basics” available from the course’s Schedule web page. It provides a tutorial on
how to use SystemC and how to view the results of the simulation using the gtkwave
waveform viewer.

1



<<2

<<2SgnExt

PC

ldPC

M
A

R

ldMAR dataIn

address

dataOut

Memory

IR

M
D

L
R

ldMDLR

ldIR

[3
1
:2

8
]

28

[27:0]

16

ldREG

reg_write_data

[1
5

:0
]

pc_mux

addr_mux

reg_write_mux

A
L
U

o
u
t

ldALUout

zero

ALU alu

func

b_mux

a_mux

32

4
0

A

B

A_reg

B_reg

reg_read_data

wreg_addr

rreg_addr

File
Register

[20:16]

rreg_addr_mux

ldA

ldB

wreg_addr_mux

mem_wrtmem_rd

[25:21]

26

[2
5

:0
]

31

[15:11]

Figure 1: The datapath of the processor used in the practical.

2 The practical

In this practical you complete a SystemC program which models the operation of a simple
processor and memory. The processor is based on the MIPS processor, but with a much
reduced instruction set. Its datapath is illustrated in figure 1. All wires shown to be
unconnected in the figure are actually connected to the control unit. They are not shown
to keep the diagram clear. The processor instruction set is described in Appendix B and
includes one non-MIPS instruction specially added for this practical, the halt instruction,
which simply ends the simulation when executed. The halt instruction and three further
instructions – addi (add immediate), lw (load word) and j (jump) – are already implemented
for you in the supplied code.

Your task is to complete the model of the processor’s control unit, so that it provides
the correct sequence of control signals to the processor datapath to implement fetching
and executing the required instructions. You must try to make the processor work as fast
as possible, i.e. try to minimise the number of cycles each instruction needs to complete.

Before starting, you will need to make your own copy of the SystemC files. Download
the file cw2-code.tgz at

http://www.inf.ed.ac.uk/teaching/courses/inf2c-cs/coursework/cw2-code.tgz

Unpack this tar-ball with

tar xzf cw2-code.tgz

It unpacks to two top-level directories, proc containing the code for the processor, and
systemc-2.2.0 containing the SystemC library code, and a symbolic link systemc to the
systemc-2.2.0 directory. Within the proc directory, you will find

• controlUnit.cpp, controlUnit.h, datapath.cpp, datapath.h, defines.h, main.cpp,
memory.cpp, memory.h: C++ files describing the processor.

2



• control-unit-table.ods: An Open Office spreadsheet, describing the combina-
tional logic of the control unit.

• Makefile: A make file containing instructions on how to compile the C++ code. If
you are unfamiliar with the make utility, enter man make at a command prompt to
read the first part of the manual page for make.

• test and, test or, test xor, test addi, test lw, test sw, test beq, test bne: test j:
Memory test files containing programs and data for loading into memory at the start
of simulations and testing instruction implementations.

When in the proc directory, the SystemC model can be compiled with the command
make, and the compiled simulation code can be run with the command ./proc memoryfile,
where memoryfile is the name of a memory test file.

3 Control unit

The code for the control unit is described in file controlUnit.cpp. As explained in the
lectures, the control unit of a multicycle processor is an FSM. The current state of the
FSM for this practical is held in variable cur state (actually a field of an instance of the
controlUnit class defined in controlUnit.h).

The control unit code is divided between two main functions

• controlUnit::ctrl regs() which initialises and updates the current state of the
machine, and deals with halting the simulation.

• controlUnit::ctrl comb() which simulates the combinational logic of the state
machine, computing the next state and outputs, given the current state and inputs.

Your job is to complete the implementation of controlUnit::ctrl comb(). Do not touch
controlUnit::ctrl regs().

The inputs available to the control unit are:

ir The contents of the Instruction Register in the datapath, which holds the current in-
struction being executed. In order to save you the trouble of finding out how to
extract various bit fields from ir using SystemC, the variables opcode and subfunct

are defined for you at the top of the ctrl comb function. They contain the corre-
sponding bit fields from ir, so you will not need to refer to ir in your code at all.

zero A flag which is true if the datapath ALU output at the end of the previous cycle was
zero, and false otherwise. Note in the datapath that the ALU zero signal is stored
into a flip-flop before it is given to the control unit.

Whereas the next state of the control unit can depend on both the current state and
these inputs, the outputs of the control unit must depend only on the current state. This
restriction on the derivation of the outputs is also applied to the control unit for the multi-
cycle processor design in the Patterson and Hennessy text-book and the vending machine
example presented in class. It is a common restriction, as it ensures the outputs are always
valid early in each clock cycle and it can simplify the combinational logic design.

3



In Appendix A of this handout you will find a complete list of the control signals
output by the control unit, together with the valid values each can take, and the effect
that each value has on the operation of the datapath or memory. You will need to refer to
this list to complete the practical.

As you can see from the provided code, some of these control signals are assigned
default values at the start of controlUnit::ctrl comb(), which may then be overwrit-
ten. This is not a problem as function ctrl comb() runs uninterrupted and only the final
values of the signals are seen by the other blocks.

4 Trying it out

Take a look at the file test j. It contains memory contents to be loaded into memory
when the simulation starts. Lines beginning with a % contain hexadecimal representations
of 32-bit values, which are loaded into memory in consecutive words starting at address
0. All other lines are comments. The file test j contains a small program consisting of
three jump instructions and a halt instruction.

Compile the code provided for you, and try ./proc test j. A waveform file, called
waves.vcd, should be created in the same directory, showing the values for all inter-
esting registers and other signals in the system. You can view it using an application
called gtkwave. With the files test j and controlUnit.cpp in front of you, together with
the control signal definitions at the end of this handout and their encodings defined in
defines.h, try out ./proc test j. Look at the resulting waveforms, making sure you
understand what the simulation is doing and why.

You can also run the test addi and test lw tests for the other already implemented
instructions, and inspect the resulting waveforms.

5 What you have to do

Your task is to extend the implementation of the function ctrl comb(), so that it imple-
ments all the remaining MIPS instructions described in Appendix B. To do this you will
need first to work out a suitable sequence of operations for each instruction, and then add
code to implement the instruction.

Do not make changes to any other functions, or your submitted code may not work
when we compile and test it with the original remaining functions.

To help you design your code, you should first extend the table provided in the spread-
sheet control-unit-table.ods with descriptions of further states so that the table fully
describes a state machine that controls the execution of each of the instructions you are
asked to support. On the left are columns where values for the current state and inputs
to the FSM are described, and on the right are columns for describing the corresponding
next state and outputs. An X for an input value or output value indicates that the value
does not matter. A row near the top of the table shows default values for the various
outputs. When an actual value entered is the same as the default value for that output,
the actual value is enclosed in parentheses to signal this to the reader.

The rest of the rows of the table are organised into groups, 1 group per current state.
Working across the table, for each group of rows describing a state, the table specifies

4



• The state number.

• The instructions and their execution steps for which the state is relevant.

• What should happen on the data-path, both in English and using program-like no-
tation.

• The possible next state transitions, sometimes dependent on the state machine in-
puts. When there are dependencies, the table indicates the instruction for which
each transition might be relevant.

• The outputs to be generated.

Similar examples of FSM truth tables can be found in the course slides and notes on
logic design and in the Patterson and Hennessy textbook. The 2nd and 3rd editions of
this textbook also have some discussion of designing the FSM for a similar multi-cycle
processor design. It is important to realise that the design here is different from that pre-
sented in the book and in lectures. For example, the Register File here has a single read
port, not two as in the book and in the multi-cycle processor lecture. Also, as mentioned
earlier, with the design here the zero signal fed as input to the control logic is acted on by
the control logic in the cycle following the cycle in which it is generated. In the book and
in the course slides, it can acted on in the same cycle it is generated.

When completing the table, you might find you want to modify the behaviour in states
0 or 1, as these states are common to all instructions, and in the supplied code, only
sufficient operations are provided to support the provided example instructions.

Once you have completed the table entries for a given instruction, the coding of that
instruction in the ctrl comb() function should be reasonably straightforward – you just
are coding the truth table in C. Please add comments to the code to describe what is
going on, so the code reader doesn’t have to refer back to the truth table spreadsheet to
follow what is going on. Writing such comments ought to help you check that you have
implemented the each segment of code correctly.

Feel free to optimise your design and your code. For example, if you find that two
states of your state machine are identical or near identical, it might be possible to com-
bine them. Also feel free to change default values of outputs. If you do so, update your
spreadsheet, so your spreadsheet and code correspond. When deciding on what optimi-
sations to make and when commenting your optimisations, remember that the overrid-
ing concern is clarity. For example, you might decide to explicitly set multiplexer values
everywhere, never relying on default values. Or, if you do rely on default multiplexer
settings, you might still add a comment at each place where you rely on some setting. Ei-
ther approach would make clear where it matters how the processor datapaths are being
routed.

For each of the instructions you are to implement, except jal and jr, a memory test
file is provided. Test your implementations by running simulations with these files. The
simulation code is configured to print out the values of the Program Counter and Regis-
ters 1-12 when the simulation halts. Read the comments at the start of the test files for the
output expected.

You are expected to write memory test files test jal and test jr for the jal and jr

instructions, and to submit these files with the other files you work on. Include appropri-
ate comments in your test files, including a description of the output expected when the
test is run.

5



6 Submitting your work

Generate a PDF version control-unit-table.pdf of your control-unit-table.ods ta-
ble. You can do this using the Export as PDF... option on the File menu in the Libre Office
Calc tool available on DICE machines. The page formatting for the provided spreadsheet
is configured so the table should export in landscape mode on one or two sheets.

Create a tar and gzipped file cw2-soln.tgz of your files controlUnit.cpp, test jal,
test jr, control-unit-table.ods and control-unit-table.pdf using the command

make submission

.
Submit your cw2-soln.tgz file using the command

submit inf2c-cs cw2 cw2-soln.tgz

.

7 Marking

Marking will take into account the following:

• Whether your instruction implementations execute correctly. We will check this with
the help of an automated script, running tests similar to those provided. For this
reason it is vital that you make sure your submitted code compiles and runs without
crashing.

As well as correctness, we will be checking here the performance of your code,
whether your instructions execute in the numbers of cycles we expect them to take
or whether they take longer.

• The quality of your spreadsheet. Are the instruction steps well described? Has appro-
priate use been made of X values for inputs and outputs? Do sample entries in the
table look correct?

• The quality of your code. How easy is it to read? How well formatted and commented
is it? How well optimised is the code? (Remember, as noted above, we will be
looking for appropriate optimisations. We do not want to see the shortest possible
code. But nor do we ideally want to see near-identical code segments repeated
several times.)

• The quality of your tests. Do the tests of the jal and jr instructions well exercise the
instructions? Are the tests well commented?

Half the marks will be awarded for the first item, half for the second three items.

6



Appendix A: Interface between the control unit and the dat-
apath/memory

Listed below is each of the control signals driven by the control unit, controlling the op-
eration of the datapath and memory in each clock cycle. Also given below are the valid
values each field can be set to, and the corresponding effects on the operation of the dat-
apath and memory.

Memory controls

boolean mem rd

true The value n on the Memory Address input is used to address memory, and a mem-
ory read operation is started. The 32-bit word at address n of memory is output.

false Do nothing.

boolean mem wrt

true The value n on the Memory Address input is used to address memory, and the 32-bit
word on the Memory DataIn input is written into memory at address n.

false Do nothing.

Register controls

boolean ldPC

true The Program Counter is loaded at the end of this cycle.

false Do nothing.

boolean ldMAR

true The Memory Address Register is loaded at the end of this cycle.

false Do nothing.

boolean ldIR

true The Instruction Register is loaded at the end of this cycle.

false Do nothing.

boolean ldMDLR

true The Memory Data Load Register is loaded from the memory data output at the end
of this cycle.

false Do nothing.

7



boolean ldA

true The A Register is loaded from the register file data output at the end of this cycle.

false Do nothing.

boolean ldB

true The B Register is loaded from the register file data output at the end of this cycle.

false Do nothing.

boolean ldALUout

true The ALU Output Register is loaded from the main ALU output at the end of this
cycle.

false Do nothing.

boolean ldReg

true The value on the register file data input (reg write data) is written into the register
selected by wreg addr (see below), at the end of this cycle.

false Do nothing.

Multiplexer controls

byte rreg addr mux

Selects the source of the address of the general register that is read to the register file data
output.

RA A The IR bit field 25:21 (Rs) provides the address of the register to be read.

RA B The IR bit field 20:16 (Rt) provides the address of the register to be read.

byte wreg addr mux

Selects which general register is written from the register file data input (reg_write_data)
at the end of this cycle, if ldREG is true.

WA RD The IR bit field 15:11 (Rd) provides the address of the register to be written.

WA RT The IR bit field 20:16 (Rt) provides the address of the register to be written.

WA 31 Register 31 ($ra) is to be written.

8



byte pc mux

PC ALU The ALU output is selected by the PC Multiplexer.

PC IMM The concatenation of the 4 most significant bits of the PC (which has already been
incremented by 4) with the 26 least significant bits of the IR, shifted left by 2 is
selected by the PC Multiplexer.

byte addr mux

ADDR PC The Program Counter output is selected by the Address Multiplexer.

ADDR MAR The Memory Address Register output is selected by the Address Multiplexer.

byte a mux

A PC The Program Counter output is selected by the A Multiplexer.

A REG The A register output A reg is selected by the A Multiplexer.

byte b mux

B REG The B register output B reg is selected by the B Multiplexer.

B 4 The constant value 4 is selected by the B Multiplexer.

B 0 The constant value 0 is selected by the B Multiplexer.

B IR 16 The least significant 16 bits of the Instruction Register, sign-extended to 32 bits,
are selected by the B Multiplexer.

B IR 16X4 The least significant 16 bits of the Instruction Register, multiplied by 4 (i.e.
shifted left by 2) and sign-extended to 32 bits, are selected by the B Multiplexer.

byte reg write mux

RW ALU OUT The ALU Output Register is selected by the reg write Multiplexer.

RW MEM The Memory Data Load Register is selected by the reg write Multiplexer.

ALU control

byte func

Controls the output the ALU as a function of the ALU inputs A and B. (Operator symbols
used in the notation below have their usual C meanings)

ADD alu = A + B

SUB alu = A - B

AND alu = A & B

9



OR alu = A | B

XOR alu = A ^ B

Special fields

There are two special control fields, which do not control the operation of the datapath or
memory, which should also be assigned. These are:

int next state The number of the next state that the control unit should enter when the
next rising clock edge arrives.

boolean halt If this is set to true, the simulation halts.

Appendix B: Instruction set description

AND

Symbolic representation: and rd, rs, rt.
Computes the bit-wise logical AND of the contents of registers rs and rt, and stores the
result in register rd.

31 26 25 21 20 16 15 11 10 6 5 0

0x0 rs rt rd 0x0 0x24

OR

Symbolic representation: or rd, rs, rt.
Computes the bit-wise logical OR of the contents of registers rs and rt, and stores the
result in register rd.

31 26 25 21 20 16 15 11 10 6 5 0

0x0 rs rt rd 0x0 0x25

Exclusive OR

Symbolic representation: xor rd, rs, rt.
Computes the bit-wise logical XOR of the contents of registers rs and rt, and stores the
result in register rd.

31 26 25 21 20 16 15 11 10 6 5 0

0x0 rs rt rd 0x0 0x26

Add immediate

Symbolic representation: addi rt, rs, n.
Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
store the result in register rt.

31 26 25 21 20 16 15 0

0x8 rs rt immediate

10



Load word

Symbolic representation: lw rt, n(rs).
Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
use the resulting integer to address memory and read the word at that address, and store
in register rt.

31 26 25 21 20 16 15 0

0x23 rs rt immediate

Store word

Symbolic representation: sw rt, n(rs).
Sign extend the 16-bit 2’s complement integer n, add to the contents of register rs, and
uses the resulting integer to address memory, storing the word in register rt at that ad-
dress.

31 26 25 21 20 16 15 0

0x2b rs rt immediate

Branch on equal

Symbolic representation: beq rt, rs, label.
Compares the contents of registers rs and rt, and if they are equal branch to the address
indicated by label. The address is calculated by the machine as follows: multiply the 2’s
complement immediate (held at bits 15:0 of the instruction) by 4, sign extend to 32-b and
add to the address of the following instruction. This is the address written into the PC if
the comparison is successful.

31 26 25 21 20 16 15 0

0x4 rs rt immediate

Branch on not equal

Symbolic representation: bne rt, rs, label.
Compares the contents of registers rs and rt, and if they are not equal branch to the
address indicated by label. The address calculation is the same as for beq.

31 26 25 21 20 16 15 0

0x5 rs rt immediate

Jump

Symbolic representation: j target.
Unconditionally jump to the address indicated by target. The target address is calculated
by concatenating the 4 most-significant bits of the address of the following instruction,
with the immediate multiplied by 4.

31 26 25 0

0x2 immediate

11



Jump and link

Symbolic representation: jal target.
Save the address of the following instruction in register $ra ($31), and unconditionally
jump to the address indicated by target, which is calculated as in the jump instruction.

31 26 25 0

0x3 immediate

Jump register

Symbolic representation: jr rs.
Unconditionally jump to the address in register rs.

31 26 25 21 20 16 15 11 10 6 5 0

0x0 rs 0x0 0x0 0x0 0x8

Halt

This final instruction is not a MIPS instruction, but is included for the purposes of the
practical.
Symbolic representation: halt.
Causes the simulated processor to halt.

31 26 25 21 20 16 15 11 10 6 5 0

0x0 0x0 0x0 0x0 0x0 0xc

8th November 2013

12


