Lecture 7: Logic design

- Binary digital logic circuits:
 - Two voltage levels (ground and supply voltage) for 0 and 1
 - Built from transistors used as on/off switches
 - Analog circuits not very suitable for generic computing
 - Digital logic with more than two states is not practical

Combinational logic: output depends only on the current inputs (no memory of past inputs)

Sequential logic: output depends on the current inputs as well as (some) previous inputs

Combinational logic circuits

Inverter (or NOT gate): 1 input and 1 output "invert the input signal"

input — output
$$\begin{array}{c|c} IN & OUT \\ \hline 0 & 1 \\ 1 & 0 \\ \end{array}$$
 OUT = \overline{IN}

• AND gate: minimum 2 inputs and 1 output "output 1 only if both inputs are 1"

Combinational logic circuits

OR gate:

- "output 1 if at least one input is 1"

$$IN_1$$
 OUT IN_2

IN ₁	IN_2	OUT	
0	0	0	
0	1	1	$\mathbf{OUT} = \mathbf{IN}_1 + \mathbf{IN}_2$
1	0	1	
1	1	1	

NAND gate:

- "output 1 if both inputs are not 1" (NOT AND)

$$IN_1$$
 OUT IN_2

IN_1	IN_2	OUT	
0	0	1	
0	1	1	$OUT = IN_1 \cdot IN_2$
1	0	1	
1	1	0	

Combinational logic circuits

NOR gate:

"output 1 if no input is 1" (NOT OR)

$$IN_1 \longrightarrow OUT$$

$\dot{\mathbf{N}}_1$	IN_2	OUT
0	0	1
0	1	0
1	0	0
1	1	0

$$\mathbf{OUT} = \overline{\mathbf{IN}_1 + \mathbf{IN}_2}$$

• Multiple-input gates:

$$\begin{array}{c|c} & AND \\ IN_1 & \vdots \\ & \vdots \\ IN_n & \vdots \end{array}$$

$$OUT = 1 \text{ if } \underline{\text{all}} \text{ IN}_i = 1$$

$$\begin{array}{c|c}
OR \\
IN_1 & \longrightarrow \\
\vdots & & \longrightarrow \\
IN_n & \stackrel{\cdot}{\longrightarrow} \\
\end{array}$$

$$OUT = 1 \text{ if } \underline{any} IN_i = 1$$

Multiplexer

Multiplexer: a circuit for selecting one of many inputs

$$z = \begin{cases} i_0, & \text{if } c=0 \\ i_1, & \text{if } c=1 \end{cases}$$

$\mathbf{i_0}$	\mathbf{i}_1	c	Z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	1	
1	1	1	1	

$$z = \overline{\mathbf{i}_{0}}.\mathbf{i}_{1}.\mathbf{c} + \mathbf{i}_{0}.\overline{\mathbf{i}_{1}}.\overline{\mathbf{c}} + \mathbf{i}_{0}.\mathbf{i}_{1}.\overline{\mathbf{c}} + \mathbf{i}_{0}.\mathbf{i}_{1}.\mathbf{c}$$

$$= \overline{\mathbf{i}_{0}}.\mathbf{i}_{1}.\mathbf{c} + \mathbf{i}_{0}.\mathbf{i}_{1}.\mathbf{c} + \mathbf{i}_{0}.\mathbf{i}_{1}.\overline{\mathbf{c}} + \mathbf{i}_{0}.\mathbf{i}_{1}.\overline{\mathbf{c}}$$

$$= (\overline{\mathbf{i}_{0}} + \mathbf{i}_{0}).\mathbf{i}_{1}.\mathbf{c} + \mathbf{i}_{0}.(\overline{\mathbf{i}_{1}} + \mathbf{i}_{1}).\overline{\mathbf{c}}$$

$$= \overline{\mathbf{i}_{1}}.\mathbf{c} + \overline{\mathbf{i}_{0}}.\overline{\mathbf{c}}$$

"sum of products form"

A multiplexer implementation

• Sum of products form: $i_1 \cdot c + i_0 \cdot \overline{c}$

- Can be implemented with 1 inverter, 2 AND gates and 1 OR

gate:

- Sum of products is not practical for circuits with large number of inputs (n)
 - The number of possible products can be proportional to 2ⁿ

Arithmetic circuits

■ 32-bit adder

64 inputs → too complex for sum of products

• Full adder:

$$sum = \overline{a.b.c} + \overline{a.b.c} + a.\overline{b.c} + a.b.c$$

$$carry = b.c + a.c + a.b$$

a	b	c	carry	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Ripple carry adder

■ 32-bit adder: chain of 32 full adders

- Carry bits c_i are computed in sequence c_1, c_2, \ldots, c_{32} (where $c_{32} = s_{32}$), as c_i depends on c_{i-1}
- Since sum bits s_i also depend on c_i, they too are computed in sequence

Propagation Delays

- Propagation delay = time delay between input signal change and output signal change at the other end
- Delay depends on technology (transistor, wire capacitance, etc.) and number of gates driven by the gate's output (fan out)
- e.g.: Sum of products circuits: 3 2-input gate delays (inverter, AND, OR) → very fast!
- e.g.: 32-bit ripple carry adder: 65 2-input gate delays (1 AND + 1 OR for each of 31 carries to propagate; 1 inverter + 1 AND + 1 OR for S_{31}) \rightarrow slow

Sequential logic circuits

- Output depends on current inputs as well as past inputs
 - The circuit has memory
- Sequences of inputs generate sequences of

outputs ⇒ sequential logic

Sequential logic circuits

- For a fixed input and n feedback signals, the circuit can have up to 2^n stable states
 - E.g. n=1 \rightarrow one state if feedback signal = 0 one state if feedback signal = 1
- Example: SR latch
 - Inputs: R, S
 - Feedback: q, \overline{q}
 - Output: Q

SR Latch

Truth table: $\begin{array}{c|ccccc} S & R & Q_i \\ \hline 0 & 0 & Q_{i-1} \\ 0 & 1 & 0 \\ u = unused & 1 & 0 & 1 \\ 1 & 1 & u & u \\ \end{array}$

- Usage: 1-bit memory
 - Keep the value in memory by maintaining S=0 and R=0
 - Set the value in memory to 0 (or 1) by setting R=1 (or S=1) for a short time

Timing of events

Asynchronous sequential logic

State (and possibly output) of circuit changes whenever inputs change

- Synchronous sequential logic
 - State (and possibly output) can only change at times synchronized to an external signal → the clock

D flip-flop

- Edge-triggered flip-flop: on a +ve clock edge, D is copied to Q
- Can be used to build registers:

General sequential logic circuit

Operation:

- At every rising clock edge next state signals are propagated to current state signals
- Current state signals plus inputs work through combinational logic and generate output and next state signals

Hardware FSM

- A sequential circuit is a (deterministic) Finite State
 Machine FSM
- Example: Vending machine
 - Accepts 10p, 20p coins, sells one product costing 30p, no change given
 - Coin reader has 2 outputs: a,b for 10p, 20p coins respectively
 - Output z asserted when 30p
 or more has been paid in

FSM implementation

Methodology:

- Choose encoding for states, e.g S0=00, ..., S3=11
- Build truth table for the next state s_1' , s_0' and output z
- Generate logic equations for s₁', s₀', z
- Design comb logic from logic equations and add stateholding register

s_1	s_0	a	b	$\mathbf{s}_{1}^{'}$	$\mathbf{s_0}'$	Z
0	0	0	0	0	0	
0	0	0	1	1	0	0
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	0	1	1	1	0
0	1	1	0	1	0	
• • • • • •			• • •	• • • •	•	