Lecture 7: Logic design

- Binary digital logic circuits:
- Two voltage levels (ground and supply voltage) for 0 and 1
- Built from transistors used as on/off switches
- Analog circuits not very suitable for generic computing
- Digital logic with more than two states is not practical

Combinational logic: output depends only on the current inputs (no memory of past inputs)

Sequential logic: output depends on the current inputs as well as (some) previous inputs

Combinational logic circuits

- Inverter (or NOT gate): 1 input and 1 output "invert the input signal"

input - - output \quad| IN | OUT |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |\quad OUT $=\overline{\mathbf{I N}}$

- AND gate: minimum 2 inputs and 1 output "output 1 only if both inputs are 1 "

IN_{1}	IN_{2}	OUT	
0	0	0	
0	1	0	OUT $=\mathrm{IN}$
1	. IN_{2}		
1	0	0	
1	1	1	

Combinational logic circuits

- OR gate:
- "output 1 if at least one input is 1 "

IN_{1}	IN_{2}	OUT	
0	0	0	OUT $=\mathrm{IN}_{1}+\mathrm{IN}_{2}$
0	1	1	
1	0	1	
1	1	1	

- NAND gate:
- "output 1 if both inputs are not 1" (NOT AND)

IN_{1}	IN_{2}	OUT
0	0	1
0	1	1

Combinational logic circuits

- NOR gate:
"output 1 if no input is 1 " (NOT OR)

IN $_{1}$	IN $_{2}$	OUT
0	0	1
0	1	0
1	0	0
1	1	0

- Multiple-input gates:

Multiplexer

- Multiplexer: a circuit for selecting one of many inputs

$$
z=\left\{\begin{array}{l}
i_{0}, \text { if } c=0 \\
i_{1}, \text { if } c=1
\end{array}\right.
$$

"sum of products form"

A multiplexer implementation

- Sum of products form: $\mathbf{i}_{1} \cdot \mathbf{c}+\mathrm{i}_{0} \cdot \overline{\mathbf{c}}$
- Can be implemented with 1 inverter, 2 AND gates and 1 OR gate:

- Sum of products is not practical for circuits with large number of inputs (n)
- The number of possible products can be proportional to $2^{\text {n }}$

Arithmetic circuits

- 32-bit adder

- Full adder:

$\operatorname{sum}=\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \cdot \mathrm{c}+\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\mathrm{a} \cdot \overline{\mathrm{b}} \cdot \overline{\mathrm{c}}+\mathrm{a} \cdot \mathrm{b} \cdot \mathrm{c}$
carry $=\mathrm{b} . \mathrm{c}+\mathrm{a} . \mathrm{c}+\mathrm{a} . \mathrm{b}$

a	b	c	carry	sum
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0
$\mathbf{0}$	$\mathbf{0}$	1	0	1
$\mathbf{0}$	$\mathbf{1}$	0	0	1
$\mathbf{0}$	$\mathbf{1}$	1	1	0
$\mathbf{1}$	0	0	0	1
$\mathbf{1}$	$\mathbf{0}$	1	1	0
1	1	0	1	0
$\mathbf{1}$	1	1	1	1

Ripple carry adder

- 32-bit adder: chain of 32 full adders

- Carry bits c_{i} are computed in sequence $c_{1}, c_{2}, \ldots, c_{32}$ (where $c_{32}=s_{32}$), as c_{i} depends on c_{i-1}
- Since sum bits s_{i} also depend on c_{i}, they too are computed in sequence

Propagation Delays

- Propagation delay $=$ time delay between input signal change and output signal change at the other end
- Delay depends on technology (transistor, wire capacitance, etc.) and number of gates driven by the gate's output (fan out)
- e.g.: Sum of products circuits: 3 2-input gate delays (inverter, AND, OR) \rightarrow very fast!
- e.g.: 32-bit ripple carry adder: 65 2-input gate delays (1 AND +1 OR for each of 31 carries to propagate; 1 inverter +1 AND +1 OR for $\left.\mathrm{S}_{31}\right) \rightarrow$ slow

Sequential logic circuits

- Output depends on current inputs as well as past inputs
- The circuit has memory
- Sequences of inputs generate sequences of outputs \Rightarrow sequential logic

Sequential logic circuits

- For a fixed input and n feedback signals, the circuit can have up to 2^{n} stable states
- E.g. $\mathrm{n}=1 \rightarrow$ one state if feedback signal $=0$ one state if feedback signal $=1$
- Example: SR latch
- Inputs: R, S
- Feedback: q, \bar{q}

- Output: Q

SR Latch

- Truth table: S	R	Q_{i}	
	0	0	$\mathrm{Q}_{\mathrm{i}-1}$
$\mathrm{u}=$ unused	0	1	0
	1	0	1
	1	1	u

- Usage: 1-bit memory

- Keep the value in memory by maintaining $S=0$ and $R=0$
- Set the value in memory to 0 (or 1) by setting $\mathrm{R}=1$ (or $\mathrm{S}=1$) for a short time

Timing of events

- Asynchronous sequential logic
- State (and possibly output) of circuit changes whenever inputs change

- Synchronous sequential logic
- State (and possibly output) can only change at times synchronized to an external signal \rightarrow the clock

D flip-flop

- Edge-triggered flip-flop: on a +ve clock edge, D is copied to Q
- Can be used to build registers:

General sequential logic circuit

- Operation:
- At every rising clock edge next state signals are propagated to current state signals
- Current state signals plus inputs work through combinational logic and generate output and next state signals

Hardware FSM

- A sequential circuit is a (deterministic) Finite State Machine - FSM
- Example: Vending machine
- Accepts 10p, 20p coins, sells one product costing 30p, no change given
- Coin reader has 2 outputs: a,b for $10 \mathrm{p}, 20 \mathrm{p}$ coins respectively
- Output z asserted when 30p or more has been paid in

FSM implementation

- Methodology:
- Choose encoding for states, e.g $\mathrm{S} 0=00, \ldots, \mathrm{~S} 3=11$
- Build truth table for the next state $\mathrm{s}_{1}{ }^{\prime}, \mathrm{s}_{0}{ }^{\prime}$ and output z
- Generate logic equations for $\mathrm{s}_{1}{ }^{\prime}, \mathrm{s}_{0}{ }^{\prime}, \mathrm{z}$
- Design comb logic from logic equations and add stateholding register

s_{1}	s_{0}	a	b	$\mathrm{s}_{1}{ }^{\prime}$	s_{0}	z
0	0	0	0	0	0	
0	0	0	1	1	0	0
0	0	1	0	0	1	
0	1	0	0	0	1	
0	1	0	1	1	1	0
0	1	1	0	1	0	

