
Inf2C Computer Systems 2012-2013 1

Lectures 5-6: Introduction to C
Motivation:
– C is both a high and a low-level language
– Very useful for systems programming
– Faster than Java

This intro assumes knowledge of Java
– Focus is on differences
– Most of the syntax is the same
– Most statements, expressions are the same

Inf2C Computer Systems 2012-2013 2

Outline

Major differences with Java
A simple program; how to compile and run
Data-types and variables
The preprocessor
Composite data structures
Arrays and strings
Pointers

Inf2C Computer Systems 2012-2013 3

Major differences with Java

C is not object oriented
– C programs are collections of functions, like Java

methods, but not class-based.
– No inheritance, subtyping, dynamic dispatch in C

C is not interpreted
– A C program is compiled into an executable machine

code program, which runs directly on the processor
– Java programs are compiled into a byte code, which

is read and executed by the Java interpreter, another
program

Inf2C Computer Systems 2012-2013 4

C is less “safe”

Run-time errors are not ‘caught’ in C
– The Java interpreter catches these errors before they

are executed by the processor
– C run-time errors happen for real and the program

crashes
The C compiler trusts the programmer!
– Many mistakes go un-noticed, causing run-time

errors

Inf2C Computer Systems 2012-2013 5

Memory management is different

Memory areas
– Heap: dynamically allocated storage
– Stack: for function/method local variables
– Static: for data living program lifetime

In Java
– All objects on heap
– Unusable objects on heap recycled automatically by garbage

collection
In C
– Data structures in all 3 areas
– Programs must explicitly free-up heap storage that is no

longer needed

Inf2C Computer Systems 2012-2013 6

C has pointers …

Pointers are special variables that reference (or
point to) another variable
– Similar to Java references

We have already seen pointers in assembly:
lw $t1,0($s2)

– $s2 is a pointer
– C pointers are the same thing! (more later)

Inf2C Computer Systems 2012-2013 7

The hello world program

Linux/DICE shell commands
Compile: gcc hello.c Run: ./a.out

#include<stdio.h>

/* This is a (multi-line)

comment */

int main(void)

{ // This is a comment too

printf("Hello world!\n");

return 0;

}

Compilation units

Programs are divided into compilation units
– Provide degree of modularity
– Each commonly has main file for source code
– Header files characterise public interfaces of units

Each compiled separately to relocatable object code
– Allows creation of object-code libraries

A linker assembles these into an executable, resolving
references between units
A loader sets up the executable program in memory
and initialises data areas, prior to program being run

Inf2C Computer Systems 2012-2013 8

Inf2C Computer Systems 2012-2013 9

Compilation units example

A.h:
func decls
var decls
type defs
…

A.c:

#include "A.h"

func defs
var defs
…

B.h:
func decls
var decls
type defs
…

B.c:
#include <stdio.h>

#include "A.h"
#include "B.h"

func defs
var defs
…

Inf2C Computer Systems 2012-2013 10

Built-in data types

The usual basic data types are there:
char 8 bits
short 16
int 16, 32, 64 (same as machine word size)
long 32, 64
float 32
double 64

Bit sizes are machine dependent
– Unlike Java where an int is always 32 bits

Normally signed, unsigned available too
No boolean type exists
– for any number (int, char,…): 0 false, other true

Inf2C Computer Systems 2012-2013 11

Categories of variables

Global (external) variables (statically allocated)
– Defined outside of functions
– Have lifetime of program and scope to file end
– extern declarations extend scope before definition

and to other files
– Declare static to hide from other files

Local (automatic) variables (allocated on stack)
– Defined inside a function (before the statements)
– Not available outside function
– Distinct storage for each function invocation
– Declare static for same storage for all invocations

Inf2C Computer Systems 2012-2013 12

The C pre-processor: cpp

Includes – imports header files
– Declarations for variables, functions, …

Text substitution, e.g. define constants
#define NAME value

Macros (inline functions)
#define MAX(X,Y) (X>Y ? X : Y)

Conditional compilation
#ifdef DEBUG

printf(“Debugging message”);

#endif

Inf2C Computer Systems 2012-2013 13

Composite data structures - struct

Structures are like objects, but their types have
no methods, unlike classes:
struct point {

int x, y;

} p1;

struct point p2;

Components accessed using “.” operator
p1.x = 2;

Passing structures between functions
– In Java references always used
– In C either all data copied or pointers used

Inf2C Computer Systems 2012-2013 14

Composite data structures - union

Unions – declared and used similarly to structures:
union geomObject {

struct circle;

struct rectangle;

} g_obj;

But all variables inside a union overlap in memory,
– Space is reserved for the largest of them, not all
– The same memory space can be interpreted in multiple

ways

Inf2C Computer Systems 2012-2013 15

In memory: structures v. unions

var1/var2

union x {
int var1;
int var2;

} ux;

ux

struct x {
int var1;
int var2;

} sx;

var1
sx

var2

sizeof(ux) 4sizeof(sx) 8

Inf2C Computer Systems 2012-2013 16

User-defined types

Define names for new or built-in types
typedef <type> <name>;

Example:
typedef unsigned char byte;

typedef struct {

struct point p;

int rad;

} circle;

...

circle c1, c2;

Inf2C Computer Systems 2012-2013 17

Arrays

Syntax of C arrays similar to Java
As in Java, C arrays have fixed size
Example declarations of array:
int n[] = {5, 8, 10}; // size fixed to 3
circle c[4]; // array of structs

C arrays have no knowledge of their length
– No checking that indexes are within bounds

In C is close relationship between arrays and
pointers
– Pointers commonly used to pass arrays between

functions

Inf2C Computer Systems 2012-2013 18

Strings

C strings are simply arrays of type char
– Encoded in 8bits using ASCII

They end with '\0', the null character
char s[10]; // up to 9 characters long

String initialisation
char s[10] = “string”; // '\0‘ implied

char s1[] = “another string”;

Usual C rule for arrays apply:
– Cannot store more chars than reserved at declaration
– But bounds are not checked!

Inf2C Computer Systems 2012-2013 19

Strings – common operations

Assignment: strcpy(s, "string");

Length: strlen(s)
To get the 6th character: s[5]
– First char at position 0, as in Java arrays

Comparison, strcmp(s1, s2) returns:
– 0 when equal
– Negative number when lexicographically s1 < s2
– Positive when s1>s2

Must #include<string.h> to call the functions
– Type: man string to see what’s available

Inf2C Computer Systems 2012-2013 20

Pointers

We have seen pointers in assembly:
lw $t1,0($s2)

$s2 points to the location
in memory where the
“real” data is kept
$s2 is a register, but there’s
nothing stopping us to
have pointers stored in
memory like “normal”
variables

0x100

data0x100
0x104

Address
reg $s2

0x100

Inf2C Computer Systems 2012-2013 21

C pointers

A C pointer is a variable that holds the address of
a piece of data
Declaration:
int *p; // p is a pointer to an int

– The compiler must know what data type the pointer
points to

Basic pointer usage:
p = &i; // p points to i now

*p = 5; // *p is another name for i

& - address of, * dereference operator

Inf2C Computer Systems 2012-2013 22

Pointers as function arguments

In Java
– an argument with primitive type is passed by value

(function gets copy of value)
– an argument with class type is passed by reference

(function gets reference to value)
In C
– All arguments passed by value
– To get effect of `pass by reference’, use an argument

with a pointer type

Inf2C Computer Systems 2012-2013 23

Example – the swap function
void swap_wrong(int a, int b) {

int t=a;

a=b; b=t;

}

swap_wrong swaps the local variables a,b which are
unknown outside of the function
void swap(int *a, int *b) {

int t=*a;

*a=*b; *b=t;

}

Function call: swap(&x, &y);

Inf2C Computer Systems 2012-2013 24

Pointer arithmetic and arrays

C allows arithmetic on pointers:
int a[10];

int *p;

p = &a[0]; // p points to a[0]

p+1 points to a[1]

– Note that &a[1] = &a[0]+4
– The compiler multiplies +1 with the data type size

In general: p+i points to a[i], *(p+i) is a[i]

Even *(a+i) p[i] are allowed
– but cannot change what a points to. It’s not a variable

Inf2C Computer Systems 2012-2013 25

More pointer arithmetic

Common expressions:
*p++ use value pointed by p, make p point to next element
*++p as above, but increment p first
(*p)++ increment value pointed by p, p is unchanged

Special value NULL used to show that a pointer is
not pointing to anything
– NULL is typically 0, so statements like if (!p) are

common
Dereferencing a NULL pointer is a very common
cause of C program crashes

Inf2C Computer Systems 2012-2013 26

Example – pointer arithmetic

Return the length of a string:
int strlen(char *s)
{

char *p=s;
while (*s++ !='\0')

;
return s-p;

}

Argument/variable s is local, so we can change it
Pointer increment, dereference and comparison all
in one! No statement in the loop body
Note pointer subtraction at return statement

Inf2C Computer Systems 2012-2013 27

Dynamic memory allocation

Pointers are not much use with statically allocated
data
Library function malloc allocates a chunk of
memory at run time and returns the address
int *p;

if ((p = malloc(n*sizeof(int))) == NULL) {

// Error

}

...

free(p); // release the allocated memory

Inf2C Computer Systems 2012-2013 28

Pointers to pointers

Consider an array of strings:
char *strTable[10];

The strings are dynamically allocated ⇒ any size
But the table size is fixed to 10 strings
How can we have both dynamically changing in
size at runtime?
char **strTable;

Since a pointer is a variable, we could have
another pointer pointing to it: pointer to pointer!

Inf2C Computer Systems 2012-2013 29

Pointers to pointers - details

Space must be allocated both for the table and the
strings themselves
char **strTable;

strTable = malloc(n*sizeof(char *));

for (i=0; i < n; i++) {

...

// s gets a string of length l

*(strTable+i) = malloc(l*sizeof(char));

strcpy(strTable[i], s);

}

// strTable[i][j] == *(*(strTable+i)+j)

Inf2C Computer Systems 2012-2013 30

That’s all folks

Not all C features have been covered, but this
introduction should be enough to get you started
Useful things to learn on your own:
– Standard input/output: printf, scanf, getc, …
– File handling: fopen, fscanf, fprintf, …

Look over past exam papers for simple C programming
exercises

