Lecture 2: Data Representation

- The way in which data is represented in computer hardware affects
- complexity of circuits
- cost
- speed
- reliability
- Must consider how to design hardware for
- Storing data - memories
- Manipulating data - e.g. adders, multipliers
- How would an algorithm for adding Roman numbers look like?

Lecture outline

- The bit - atomic unit of data
- Representing numbers
- Representing text

The bit

- Information represented as sequences of symbols
- In text, symbols are letters, numerals, punctuation, whitespace
- With computers, we use just 0s and 1s, bits
- Bit is an acronym for Binary digiT
- Disadvantages: little information per bit, must use many of them. $512 \equiv 100000000, \quad$ 'A' $\equiv 01000001$
- Advantages: easy to do computation, very reliable, simple circuits

Natural numbers representation

- Non-negative (unsigned) integers are very simple to represent in binary

Basic operations

- Addition, subtraction with binary numbers is easy:

Fixed bit-length arithmetic

- Hardware cannot handle infinite long bit sequences
- We end up with a few fixed sized data types
- Byte: always 8 bits
- Word: the 'natural' unit of access, usually 32 bits
- Overflow happens when a result does not fit
- Numbers wrap-around when they become too large
- Comp. arithmetic is modulo $2^{\mathrm{n}}, \mathrm{n}=$ number of bits

What about negative numbers?

- Sign-magnitude representation:
- Use $1^{\text {st }}$ bit (MSB) as the sign: 1-negative, 0-positive $0110 \equiv 6 \quad 1110 \equiv-6$
- Complicates addition and subtraction
- The actual operation depends on the sign
- There is a better way

Two's complement representation

- If doing mod 2 k arithmetic on numbers $0 \ldots 2 \mathrm{k}-1$, treat numbers k...2k-1 as $-\mathrm{k} . . .-1$
- To find the value of a binary number, consider the MSB as having negative weighting:

- Arithmetic operations do not depend on the operands' signs
- $0110 \equiv 6 \quad 1110 \equiv-2$

2's complement quirks

- The MSB is the sign
- Range is asymmetric: $-2^{\mathrm{n}-1}$ to $2^{\mathrm{n}-1}-1$
- There are two kinds of overflows:
- Positive overflow produces a negative number
- Negative underflow produces a positive number
- To negate a number

Invert all bits $(0 \leftrightarrow 1)$ and add 1 , at the LSB
$-\left(-2^{\mathrm{n}-1}\right)$ overflows!

- $\mathrm{A}-\mathrm{B}=\mathrm{A}+2$'s complement of B

Converting between data types

- Converting a 2's complement number from a smaller to a larger representation is done by sign extension

Example: from byte to short (16 bits):

$$
\begin{gathered}
2=00000010 \Rightarrow ? ? ? ? ? ? ? ? 00000010 \\
-2=11111110 \Rightarrow ? ? ? ? ? ? ? \text { ? } 11111110
\end{gathered}
$$

$-2=\frac{\stackrel{\rightharpoonup}{11111110} \Rightarrow \overline{1111111} 111111110}{\text { (byte) }} 2=\underset{\text { (short) }}{\stackrel{\Gamma}{00000010} \Rightarrow \overline{0000000000000010}}$

Shifting

- Shifting: move the bits of a data type left or right
- Data bits falling off the edge are lost
- Os fill up the empty bit places for left shifts
- For right shifts, two options:
- Fill with 0: for non-numerical data (or positive integers)
- Fill with the MSB: for 2's complement numbers
- Shift left by n is equivalent to multiplying by 2^{n}
- Shift right by n is equivalent to dividing by 2^{n} and rounding towards $-\infty$
- Example

$$
\begin{gathered}
6=00000110 \gg 2 \rightarrow 00000001=1 \\
-6=11111010 \gg 2 \rightarrow 11111110=-2
\end{gathered}
$$

Hexadecimal notation

- Binary numbers (and other data) are too long and tedious for us to use
- Hexadecimal (base 16) is very commonly used in computer programming
- Hex digits: 0-9 and A-F
$-A=10, B=11, \ldots, F=15$
- Conversion to/from binary is very easy:

Every 4 bits correspond to 1 hex digit:

$$
\underbrace{1111}_{F(15)} \underbrace{1000}_{8}=0 x F 8
$$

Hex is just a convenience, computers use the binary form

Real numbers - floating point

- Java's float (32 bits) doubl e (64 bits)
- IEEE 754:
- example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$
\left(2^{-1}+2^{-2}=0.5+0.25=0.75\right)
$$

- Normalized:

- example: 25 in base $10 \Rightarrow 11001$ in base $2 \Rightarrow 1.1001 \times 2^{4}$

Floating Point

- 32 bit:

$$
(-1)^{\mathrm{s}} \times(1 . \operatorname{sig}) \times 2^{\exp -127}
$$

e.g.,
$(0.75)_{10} \rightarrow(0.11)_{2} \rightarrow\left(1.1 \times 2^{-1}\right)_{2} \rightarrow 00111111010000000000000000000000$

- 64 bit:
- exponent $=11$ bits; significand $=52$ bits
- Note: processors usually have specialized floating point units and extra fp registers to perform fp arithmetic

Representing characters, strings

- Characters need to be encoded in binary too
- Operations on characters have simpler requirements than on numbers, so the encoding choice is not crucial
- Most common representation is ASCII
- Each character is held in a byte
- E.g. ' 0 ' is 0 x 30 , ' A ' is 0 x 41, ' a ' is 0 x 61
- Java uses Unicode which can encode characters from many (all?) languages
- 16 bits per character required
- Words, sentences, etc. are just strings of characters
- A special character, encoded as $0 x 00$, shows where the string ends (in C)
- Or the string length is kept with the string itself (in Java)

Summary

- Computers use binary representation
- 2's complement
- Floating point
- Characters and strings

