Tutorial 2: Introduction to statistical pattern recognition

1. Given a two dimensional space with the following dataset:

 Class A: (0, 2), (0, 4), (1, 2), (2, 3)
 Class B: (2, 1), (3, 1), (3, 3), (4, 4)

 Classify a new point (2, 2) using k-nearest neighbour classification using Euclidean distances and $k = 3$ and $k = 5$.

2. 60% of mathematicians stare at your shoes when they meet you, but only 10% of engineers do. You are at an exciting party composed entirely of mathematicians and engineers. 80% of the people there are engineers. You meet someone who stares at your shoes. What is the probability that they are a mathematician?

3. A screening test is devised for a disease. It seems that the test is very accurate: 99% of people with the disease test positive; 95% of people who do not have the disease test negative. Of those who are given the test, 1% actually have the disease.

 (a) What percentage of subjects will test positive?

 (b) Given that a subject tests positive, what is the posterior probability that they have the disease?

4. Consider a fictitious medical condition C, which is either present ($C = 1$) or absent ($C = 0$) in a subject. The only information we have about a subject is whether they have a rash ($R = 1$), have a temperature ($T = 1$), or are dizzy ($D = 1$). Thus we have a 3-dimensional feature vector, (R, T, D). If we have the following information about a subject: $R = 1$, $T = 0$, $D = 1$, then the feature vector is $X = (1, 0, 1)$.

 Training data are available from 40 subjects, shown in figure 1 (overleaf). Using this training data, estimate the likelihoods:

 $P(X = (0, 0, 0) \mid C = 1), \ldots, P(X = (1, 1, 1) \mid C = 1), \ldots, P(X = (0, 0, 0) \mid C = 0), \ldots, P(X = (1, 1, 1) \mid C = 0)$.

 The following test data are observed:

 $x_1 = (1, 1, 1), \quad x_2 = (1, 0, 0), \quad x_3 = (0, 1, 0)$.

 It is known that the prior probability of the condition is $P(C = 1) = 0.25$. To which class should each test vector be classified?

 Comment on this approach to classification if we had a situation with a 10-dimensional feature vector, or if we have a situation where each input dimension has 5 possible values rather than 2.
5. This is an extension of the line of best fit discussed in Section 5.5.3 in Lecture Note 5 to a 3D case. Consider a set of \(N \) observations \(\{p_n\}_{n=1}^N \) in a 3D space, where \(p_n = (x_n, y_n, z_n)^T \), for which we would like to find the best fit plane \(z = ax + by + c \). Derive the system of linear equations in \(a, b, \) and \(c \). (NB: It is more general to define a plane as \(ax + by + cz + d = 0 \), but we here consider a simpler version.)