
Learning and Data Lab 1a (v1.2) Informatics 2B

Introduction to Matlab

Steve Renals

23 January 2008

1 Introduction

MATLAB is a programming language that grew out of the need to process matrices. It is used ex-
tensively in science and engineering. It now has many features and toolboxes to support numerical
programming (including machine learning) and visualization. Here you will meet only a fraction of
MATLAB features.

1.1 Getting started

[dunduff]srenals: matlab

And this will bring up the main working window (with panels for command history, etc.) and a help
window. You can type MATLAB expressions to the >> prompt, eg:

>> 57*64.3

ans = 3.6651e+03

>> power(10, pi/2)

ans = 37.2217

The second of these makes use of a builtin function, power, and a predefined constant pi. If you want
to see what a MATLAB function does you can go to the help window and find it using the index, the
contents, or by searching. (You can also type help power at the command line.) The MATLAB help
system is very good, and worth exploring.

MATLAB handles complex numbers (using the symbol j) so it is possible to do things such as:

>> exp(j*pi)

ans = -1.0000 + 0.0000i

we can set up some variables in MATLAB and perform some computations:

>> x = 3.4; y = 5.7;

>> z = x*y;

>> z

z = 19.3800

Variables x, y and z persist in the MATLAB workspace until they are changed. (Note that a semicolon
(’;’) at the end of a line prevents the result of an expression being printed to the screen—useful when
dealing with big vectors and matrices.

1

Learning and Data Lab 1a (v1.2) Informatics 2B

1.2 Vectors

To represent a vector quantity in MATLAB write the vector components as a list:

>> v = [1 1 1];

>> w = [2 3 4];

>> v+w

ans = 3 4 5

Note that these are, in fact, row vectors. To create a column vector you could use the transpose
operator ’:

>> v’

v = 1

1

1

or you can explicitly create a column vector:

>> v = [1; 1; 1];

Useful vector operations include:

Vector sum v+w

Vector difference v-w

Multiplication by a scalar 10*v

Scalar dot (inner) product dot(v,w)

Vector cross product cross(v,w)

Vector magnitude (norm) norm(v)

Some operations on vectors work on the elements one-by-one, returning the answer as a vector of the
same dimension:

>> sqrt([1 2 3 4])

ans = 1.0000 1.4142 1.7321 2.0000

The colon (’:’) operator generates equally-spaced point between its first and last inputs:

>> 1:4

ans = 1 2 3 4

>> 1:0.5:2

ans = 1.0000 1.5000 2.0000

>> 4:-1:1

ans = 4 3 2 1

When there are three arguments, the second one specifies the gap between the outputs (defaults to 1
when there are only two arguments). Here is another example:

>> squares = (1:4).ˆ2

squares = 1 4 9 16

2

Learning and Data Lab 1a (v1.2) Informatics 2B

1.3 Plotting

MATLAB is very good for plotting graphs. For example using the variable created above:

>> plot(squares)

plot(Y) plots the columns of Y versus their index. Use a few more points:

>> b = (1:10);

>> plot(b.ˆ2)

To plot several curves on the same graph we use the command

>> hold on

to prevent previous plots being erased. We can now type

>> plot(b.ˆ1.5, ’r’)

>> plot(b.ˆ1.75, ’g’)

The second argument defines the line colour. You can also change the line style, etc. Use the Help
window to find out more. It also possible to add axis labels, a title, tick marks, etc. to a plot, either
through additional arguments (see Help), or interactively using the menus on the plot window.

plot also works with vectors of x and y values, for example:

>> x = (0:.01:2*pi);

>> y = sin(x);

>> figure

>> plot(x,y)

figure opens a new plot window.

MATLAB has many demos, several to do with plotting. Either type demo or click Help→Demos.

1.4 Exercises

1. On the same graph in the range (0, 2π) plot sin(x) and cos(x).

2. In a new figure plot, on the same graph, lg(x), x, x lg(x), and x2. (Note that log gives loge and
log10 gives log10 in MATLAB. lg is not built in.)

3. Plot
√

x and xsin(x) on the same axes.

4. Plot x3 and 1.01x on the same axes.

Make sure the axes are appropriately scaled and labelled, that the graph has a title, that the individual
curves are titled in the legend etc.

3

Learning and Data Lab 1a (v1.2) Informatics 2B

1.5 Matrices

MATLAB really comes into its own when you want to do computations with matrices, such as for
machine learning and pattern recognition.

You can create a matrix from the keyboard:

>> m = [1 2 3; 4 5 6; 7 8 9]

m =

1 2 3

4 5 6

7 8 9

Semi-colon is used to separate rows. Here is another matrix:

>> n = [1 0 0; 0 1 0; 0 0 1]

n =

1 0 0

0 1 0

0 0 1

And we can do the usual matrix operations of add and multiply:

>> m+n

ans =

2 2 3

4 6 6

7 8 10

>> m*n

ans =

1 2 3

4 5 6

7 8 9

n is the 3x3 identity matrix. An easier way to generate an identity matrix is to use the MATLAB
command eye:

eye(3)

MATLAB overloads its operators (when it is not ambiguous). For example, add 1 to each matrix
element:

>> m+1

ans =

2 3 4

5 6 7

8 9 10

MATLAB can distinguish between matrix operations and element-by-element operations. The ’dot’
syntax is used for element-by-element operations. For example, the following multiplies correspond-
ing elements of two matrices:

4

Learning and Data Lab 1a (v1.2) Informatics 2B

>> m.*n

ans =

1 0 0

0 5 0

0 0 9

Other useful functions include zeros(i,j)which generates an i× j zero matrix, and ones to generate
a matrix of ones. The size command returns the dimensions of a matrix:

>> zeros(3,2)

ans =

0 0

0 0

0 0

>> o = ones(2,3);

>> [rw,cl]=size(o);

And of course it is possible to combine functions:

[rw,cl]=size(ones(2,3))

To access the i, jth element of a matrix m, use m(i,j). The colon operator : can be used to select a
submatrix. For example to select a submatrix containing rows 2 and 3 and columns 1 and 2 of m:

>> m(2,3)

ans = 6

>> m(2:3,1:2)

ans =

4 5

7 8

A colon on its own selects all rows (or columns):

>> m(1,:)

ans =

1 2 3

>> m(1:2,:)

ans =

1 2 3

4 5 6

Finally, a colon on its own turns a matrix into a 1D column vector, working column by column:

>> m(:)

ans =

1

4

7

2

5

5

Learning and Data Lab 1a (v1.2) Informatics 2B

8

3

6

9

Relation operators such as < and > work with matrices too, eg:

>> m > 5

ans =

0 0 0

0 0 1

1 1 1

These are not elements of m, but boolean values (MATLAB calls them logical indices) which indicate
the positions where the test is true. To access the actual elements that are greater than 5:

>> m.*(m > 5)

ans =

0 0 0

0 0 6

7 8 9

We can also use these logical indices to extract just those values that obey the condition:

>> m(m > 5)

ans =

7

8

6

9

Note that the result is a vector containing only those values that obey the condition. See also the
function find (look at the help pages).

1.6 Other matrix commands

MATLAB has all the matrix operations you might expect. Given a matrix a:

>> a = [1 4 2 ; 4 2 -1 ; 2 -1 3]

a =

1 4 2

4 2 -1

2 -1 3

we can take its transpose a’, compute the matrix norm norm(a), the determinant det(a) and the
matrix inverse inv(a):

>> a’

ans =

6

Learning and Data Lab 1a (v1.2) Informatics 2B

1 4 2

4 2 -1

2 -1 3

>> inv(a)

ans =

-0.0746 0.2090 0.1194

0.2090 0.0149 -0.1343

0.1194 -0.1343 0.2090

>> det(a)

ans = -67

>> norm(a)

ans = 5.6866

It also easy to solve the linear equation Ax = b using the operator \:

>> b = [1 ; 2; 3]

b =

1

2

3

>> x = a\b

ans =

0.7015

-0.1642

0.4776

Some other very useful commands are sum which computes the sum of each column, and mean which
computes the mean of each column:

>> sum(m)

ans =

12 15 18

>> mean(m)

ans =

4 5 6

How to take the mean of each row? One way would be to compute the transpose:

>> mean(m’)

ans =

2 5 8

Another way would be to read the Help documentation on mean and find that it takes an optional
second argument:

7

Learning and Data Lab 1a (v1.2) Informatics 2B

>> mean(m,2)

ans =

2

5

8

Note that here the answer is a column vector.

And reshape(m,r,c) reshapes matrix (or vector) m to have r rows and c columns:

>> reshape(m, 1, 9)

ans =

1 4 7 2 5 8 3 6 9

2 Programming in MATLAB

You can get lots done in MATLAB using it as an interactive environment, issuing commands one at
a time, while keeping data and variables in the workspace. However you will soon want to write
functions or scripts.

A MATLAB function or script is written as an M-file (a text file with the extension .m)

Functions A function file should contain a single function definition., Function func should reside in
a file called func.m. Functions can take input arguments and return output values, and variables
within them are local.

Scripts A MATLAB script file is a sequence of MATLAB commands (and no function heading)
stored in an M-File. When a script executes (called by typing its name without the .m) the
commands are executed, and variables mentioned in the script reside in the MATLAB workspace
(and are available when the script ends).

2.1 Examples

As an example Matlab function here is a function that computes a one-dimensional Gaussian.

function p = gaussian1d(mean, var, x)

% compute a 1D Gaussian

diff = (mean-x);

p = exp(-0.5*diff.*diff/var) / sqrt(2*pi*var);

Save it in a file gaussian1d.m and call it as follows:

>> x = (-4:.1:4);

>> plot(x,gaussian1d(0, 1, x))

8

Learning and Data Lab 1a (v1.2) Informatics 2B

2.2 Control structures

MATLAB has the usual set of control structures: for, if-else, etc. A for loop requires a vector of
loop variable values, eg:

for i=1:n

% do something with i

end

or

points = [3 5 7 9 11];

for i=points

% and so on

Use the help system to find out more.

2.3 Vectorization

If you write MATLAB code with lots of explicit loops (even worse, lots of nested loops), then your
code is unlikely to be taking advantage of the facilities for efficient matrix-vector computation (vec-
torization). Writing your code in terms of matrix-vector operations will result in code that is easier to
read and that runs an order of magnitude faster.

9

	Introduction
	Getting started
	Vectors
	Plotting
	Exercises
	Matrices
	Other matrix commands

	Programming in
	Examples
	Control structures
	Vectorization

