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In the previous chapter we saw how we can combine a Gaussian probability density function with
class prior probabilities using Bayes’ theorem to estimate class-conditional posterior probabilities. For
each point in the input space we can estimate the posterior probability of each class, assigning that
point to the class with the maximum posterior probability. We can view this process as dividing the
input space into decision regions, separated by decision boundaries. In the next section we investigate
whether the maximum posterior probability rule is indeed the best decision rule (in terms of minimising
the number of errors). In the following sections we introduce discriminant functions which define
the decision boundaries, and investigate the form of decision functions induced by Gaussian pdfs
with different constraints on the covariance matrix. We then discuss a particular type of discriminant
functions, perceptron, which finds a decision boundary directly from data without knowing probabilistic
distributions.

10.1 Decision boundaries

We may assign each point in the input space as a particular class. This divides the input space into
decision regions Rk, such that a point falling in Rk is assigned to class Ck. In the general case, a
decision region Rk need not be contiguous, but may consist of several disjoint regions each associated
with class Ck. The boundaries between these regions are called decision boundaries.

Figure 10.1 shows the decision regions that result from assigning each point to the class with the
maximum posterior probability, using the Gaussians estimated for classes A, B and C from the example
in the previous chapter.

10.1.1 Placement of decision boundaries

Estimating posterior probabilities for each class results in the input space being divided into decision
regions, if each point is classified as the class with the highest posterior probability. But is this an
optimal placement of decision boundaries?

Consider a 1-dimensional feature space (x) and two classes C1 and C2. A reasonable criterion for the
placement of decision boundaries is one that minimises the probability of misclassification. To estimate
the probability of misclassification we need to consider the two ways that a point can be classified
wrongly:

1. assigning x to C1 when it belongs to C2 (x is in decision region R1 when it belongs to class C2);
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Figure 10.1: Decision regions for the three-class two-dimensional problem from the previous chapter.
Class A (red), class B (blue), class C (cyan).

2. assigning x to C2 when it belongs to C1 (x is in R2 when it belongs to C1).

Thus the probability of the total error may be written as:

P(error) = P(x ∈ R2,C1) + P(x ∈ R1,C2) .

Expanding the terms on the right hand side as conditional probabilities, we may write:

P(error) = P(x ∈ R2 |C1) P(C1) + P(x ∈ R1 |C2) P(C2) . (10.1)

10.1.2 Overlapping Gaussians

Figure 10.2 illustrates two overlapping Gaussian distributions (assuming equal priors). Two possible
decision boundaries are illustrated and the two regions of error are coloured.

We can obtain P(x ∈ R2 |C1) by integrating p(x |C1) within R2, and similarly for P(x ∈ R1 |C2), and
thus rewrite Equation (10.1) as:

P(error) =

∫

R2

p(x |C1) P(C1) dx +

∫

R1

p(x |C2) P(C2) dx . (10.2)

Minimising the probability of misclassification is equivalent to minimising P(error). From Equa-
tion (10.2) we can see that this is achieved as follows, for a given x:

• if p(x |C1) P(C1) > p(x |C2) P(C2), then point x should be in region R1;

• if p(x |C2) P(C2) > p(x |C1) P(C1), then point x should be in region R2.

The probability of misclassification is thus minimised by assigning each point to the class with the
maximum posterior probability.
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Figure 10.2: Overlapping Gaussian pdfs. Two possible decision boundaries are shown by the dashed
line. The decision boundary on the left hand plot is optimal, assuming equal priors. The overall
probability of error is given by the area of the shaded regions under the pdfs.

It is possible to extend this justification for a decision rule based on the maximum posterior probability
to D-dimensional feature vectors and K classes. In this case consider the probability of a pattern being
correctly classified:

P(correct) =

K∑

k=1

P(x ∈ Rk,Ck) (10.3)

=

K∑

k=1

P(x ∈ Rk |Ck) P(Ck) (10.4)

=

K∑

k=1

∫

Rk

p(x |Ck) P(Ck) dx . (10.5)

This performance measure is maximised by choosing the Rk such that each x is assigned to the class k
that maximises p(x |Ck) P(Ck). This procedure is equivalent to assigning each x to the class with the
maximum posterior probability.

Thus the maximum posterior probability decision rule is equivalent to minimising the probability of
misclassification. However, to obtain this result we assumed both that the class-conditional models are
correct, and that the models are well-estimated from the data.

10.2 Discriminant functions

If we have a set of K classes then we may define a set of K discriminant functions yk(x), one for each
class. Data point x is assigned to class Ck if

yk(x) > y`(x) for all ` , k.

In other words: assign x to the class Ck whose discriminant function yk(x) is biggest.

This is precisely what we did in the previous chapter when classifying based on the values of the log
posterior probability. Thus the log posterior probability of class Ck given a data point x is a possible
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discriminant function:

yk(x) = ln P(Ck |x) = ln p(x |Ck) + ln P(Ck) + const. (10.6)

The posterior probability could also be used as a discriminant function, with the same results: choosing
the class with the largest posterior probability is an identical decision rule to choosing the class with
the largest log posterior probability.

As discussed above, classifying a point as the class with the largest (log) posterior probability cor-
responds to the decision rule which minimises the probability of misclassification. In that sense, it
forms an optimal discriminant function. A decision boundary occurs at points in the input space where
discriminant functions are equal. If the region of input space classified as class Ck and the region
classified as class C` are contiguous, then the decision boundary separating them is given by:

yk(x) = y`(x) .

Decision boundaries are not changed by monotonic transformations (such as taking the log) of the
discriminant functions.

Formulating a pattern classification problem in terms of discriminant functions is useful since it is
possible to estimate the discriminant functions directly from data, without having to estimate probability
density functions on the inputs. Direct estimation of the decision boundaries is sometimes referred
to as discriminative modelling. In contrast, the models that we have considered so far are generative
models: they could generate new ‘fantasy’ data by choosing a class label, and then sampling an input
from its class-conditional model.

10.3 Discriminant functions for class-conditional Gaussians

What is the form of the discriminant function when using a Gaussian pdf? As before, we take the
discriminant function as the log posterior probability:

yk(x) = ln P(Ck |x) = ln p(x |Ck) + ln P(Ck) + const.

= −1
2

(x − µk)
TΣ−1

k (x − µk) −
1
2

ln |Σk| + ln P(Ck) . (10.7)

We have dropped the term −1/2 ln(2π), since it is a constant that occurs in the discriminant function
for each class. The first term on the right hand side of Equation (10.7) is quadratic in the elements of x
(i.e., if you multiply out the elements, there will be some terms containing x2

i or xix j).

10.4 Linear discriminants

Let’s consider the case in which the Gaussian pdfs for each class all share the same covariance matrix.
That is, for all classes Ck, Σk =Σ. In this case Σ is class-independent (since it is equal for all classes),
therefore the term −1/2 ln |Σ| may also be dropped from the discriminant function and we have:

yk(x) = −1
2

(x − µk)
TΣ−1(x − µk) + ln P(Ck) . (10.8)

If we explicitly expand the quadratic matrix-vector expression we obtain the following:

yk(x) = −1
2

(xTΣ−1x − xTΣ−1µk − µT
kΣ
−1x + µT

kΣ
−1µk) + ln P(Ck) . (10.9)
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Figure 10.3: Discriminant function for equal covariance Gaussians

The mean µk depends on class Ck, but (as stated before) the covariance matrix is class-independent.
Therefore, terms that do not include the mean or the prior probabilities are class independent, and may
be dropped. Thus we may drop xTΣ−1x from the discriminant.

We can simplify this discriminant function further. It is a fact that for a symmetric matrix M and
vectors a and b:

aT Mb = bT Ma .

Now since the covariance matrix Σ is symmetric, it follows that Σ−1 is also symmetric.1 Therefore:

xTΣ−1µk = µT
kΣ
−1x .

We can thus simplify Equation (10.9) as:

yk(x) = µT
kΣ
−1x − 1

2
µT

kΣ
−1µk + ln P(Ck) . (10.10)

This equation has three terms on the right hand side, but only the first depends on x. We can define two
new variables wk (D-dimension vector) and wk0, which are derived from µk, P(Ck), and Σ:

wT
k = µT

kΣ
−1 (10.11)

wk0 = −1
2
µT

kΣ
−1µk + ln P(Ck) = −1

2
wT

k µk + ln P(Ck) . (10.12)

Substituting Equation (10.11) and Equation (10.12) into Equation (10.10) we obtain:

yk(x) = wT
k x + wk0 . (10.13)

This is a linear equation in D dimensions. We refer to wk as the weight vector and wk0 as the bias for
class Ck.

We have thus shown that the discriminant function for a Gaussian which shares the same covariance
matrix with the Gaussians pdfs of all the other classes may be written as Equation (10.13). We call such
discriminant functions linear discriminants: they are linear functions of x. If x is two-dimensional, the
decision boundaries will be straight lines, illustrated in Figure 10.3. In three dimensions the decision
boundaries will be planes. In D-dimensions the decision boundaries are called hyperplanes.

1It also follows that xT Σ−1x ≥ 0 for any x.
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10.5 Spherical Gaussians with equal covariance

Let’s look at an even more constrained case, where not only do all the classes share a covariance
matrix, but that covariance matrix is spherical: the off-diagonal terms (covariances) are all zero, and
the diagonal terms (variances) are equal for all components. In this case the matrix may be defined by
a single number, σ2, the value of the variances:

Σ = σ2I

Σ−1 =
1
σ2 I

where I is the identity matrix.

Since this is a special case of Gaussians with equal covariance, the discriminant functions are linear,
and may be written as Equation (10.13). However, we can get another view of the discriminant
functions if we write them as:

yk(x) = −||x − µk||2
2σ2 + ln P(Ck) . (10.14)

If the prior probabilities are equal for all classes, the decision rule simply assigns an unseen vector to
the nearest class mean (using the Euclidean distance). In this case the class means may be regarded as
class templates or prototypes.

Exercise: Show that Equation (10.14) is indeed reduced to a linear discriminant.

10.6 Two-class linear discriminants

To get some more insights into linear discriminants, we can look at another special case: two-class
problems. Two class problems occur quite often in practice, and they are more straightforward to think
about because we are considering a single decision boundary between the two classes.

In the two-class case it is possible to use a single discriminant function: for example one which takes
value zero at the decision boundary, negative values for one class and positive values for the other. A
suitable discriminant function in this case is the log odds (log ratio of posterior probabilities):

y(x) = ln
P(C1 |x)
P(C2 |x)

= ln
p(x |C1)
p(x |C2)

+ ln
P(C1)
P(C2)

= ln p(x |C1) − ln p(x |C2) + ln P(C1) − ln P(C2) . (10.15)

Feature vector x is assigned to class C1 when y(x) > 0; x is assigned to class C2 when y(x) < 0. The
decision boundary is defined by y(x) = 0.

If the pdf for each class is a Gaussian, and the covariance matrix is shared, then the discriminant
function is linear:

y(x) = wT x + w0 ,

where w is a function of the class-dependent means and the class-independent covariance matrix, and
the w0 is a function of the means, the covariance matrix and the prior probabilities.

The decision boundary for the two-class linear discriminant corresponds to a (D−1)-dimensional
hyperplane in the input space. Let a and b be arbitrary two points on the decision boundary. Then:

y(a) = 0 = y(b) .
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Figure 10.4: Geometry of a two-class linear discriminant y(x) = wT x + w0.

And since y(x) is a linear discriminant:

wT a + w0 = 0 = wT b + w0.

And a little rearranging gives us:
wT (a − b) = 0 . (10.16)

In three dimensions, Equation (10.16) is the equation of a plane, with w being the vector normal to the
plane. In higher dimensions, this equation describes a hyperplane, and w is normal to any vector lying
on the hyperplane. The hyperplane is the decision boundary in this two-class problem.

The distance from the hyperplane to the origin (0, 0) is the length of of the position vector p that points
to the foot of perpendicular from the origin to the hyperplane. Since y(p) = wT p + w0 = 0, the distance
is thus given by:

` = ‖p‖ =

∣∣∣∣∣∣

(
w
‖w‖

)T

p
∣∣∣∣∣∣ =
|w0|
‖w‖ , (10.17)

which is illustrated in Figure 10.4.

10.7 Perceptron

We now consider a two-class linear discriminant function whose output is binary - 0 for Class 0,
and 1 for Class 1. This can be achieved by applying a unit step function g(a) to the output of linear
discriminant, so that the binary-output discriminant function is defined as

y(x) = g(wT x + w0), (10.18)

where

g(a) =

{
1, a ≥ 0,
0, a < 0. (10.19)

We see that the output y(x) is 1 if x belongs to the positive side of the decision boundary (including the
boundary), and 0 otherwise.

This type of discriminant function is called ‘perceptron’, which was invented by Frank Rosenblatt in
late 1950s. The original idea of perceptron was to mimic a funciton of human brain with a machine
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that is capable of learning, where the machine adjusts its parameters in a trial and error manner to
reduce errors. The Rosenblatt’s original perceptron has very limited ability, but it has been extended
in various ways, and it forms the basis of modern artificial neural networks. We consider a simple
mathematical model of the original perceptron in this section.

10.7.1 Perceptron error correction algorithm

Assume we have got a set of training samples {x1, . . . , xN}, where each sample xi, i=1, . . . ,N, has a
label ti of a binary value, 0 for Class 0 and 1 for Class 1.

For the sake of simplicity, we introduce new variables (augmented vectors), ẇ =

(
w0

w

)
and ẋ =

(
1
x

)
,

so that
wT x + wo = ẇT ẋ . (10.20)

We re-define y(ẋ) accordingly such that y(ẋ) = g(ẇT ẋ). In the perceptron training, we repeat adjusting
the weight vector ẇ for each input ẋi to reduce misclassification. Let ẇ(s) denote the weight vector
after s-th training iteration, where ẇ(0) means the initial weight vector. We train the model with the
following algorithm.

Step 1 Set s = 0, and initialise the weight vector ẇ(0).

Step 2 For each training sample ẋi, i = 1, . . . ,N, calculate the output y(ẋi), and modify the weight
vector as follows if ẋi is misclassified.

ẇ(s+1) =

{
ẇ(s) + η ẋi, ti = 1,
ẇ(s) − η ẋi, ti = 0, (10.21)

where η is a positive constant (0 < η < 1) called learning rate. The weight vector is not modified
if ẋi is classified correctly.

Step 3 Increment s by 1, and terminate if ẇ does not change (i.e. convergence), otherwise repeat Step
2.

The Step 2 requires us to check whether ẋi is classified correctly or not, which can be simplified to the
following formula:

ẇ(s+1) = ẇ(s) + η (ti−y(ẋi)) ẋi . (10.22)

Does the training algorithm above stop in a finite time? We can prove that the algorithm converges if
the data set is ‘linearly separable’ - there is a linear decision boundary that separates all the training
samples without errors. On the other hand, the algorithm does not converge if the data set is not linearly
separable.

10.7.2 Multi-layer Perceptron

Although the original perceptron is just a linear classifier, we can combine more than one perceptron
to form complex decision boundaries and regions.

Let’s consider a toy example of 2D data shown in Figure 10.5, in which there are two decision
boundaries and three disjoint regions - one region shown in a dark colour corresponds to Class 1, and
the other two regions shown in white correspond to Class 0. Although each of the decision boundaries
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Figure 10.5: An example of a data set that is not linearly separable.

is linear, the data set is not linearly separable, and a single perceptron is unable to have more than one
decision boundary.

To tackle this problem, we start with considering two perceptrons, M1 : y1(ẋ) = g(ẇT
1 ẋ) , and

M2 : y2(ẋ) = g(ẇT
2 ẋ), each of which is responsible for one of the two decision boundaries. Figure 10.6

illustrates the decision boundaries and regions for M1 and M2, in which it can be confirmed that the
intersection of the dark regions (where y1 = 1 and y2 = 1) corresponds to Class 1. Figure 10.7 depicts
the output yi of model Mi, i = 1, 2 against input (x1, x2).

Since the output y1 and y2 take binary values, 0 or 1, there are only four possible combinations,
{(y1, y2)} = {(0, 0), (0, 1), (1, 0), (1, 1)}, among which only the pair (1, 1) corresponds to Class 1, and
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Figure 10.6: Decision boundaries and regions of M1 and M2.
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Figure 10.7: Output of M1 and M2 against input (x1, x2).
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Figure 10.9: Output of M3.
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Figure 10.10: Structure of the multi-layer per-
ceptron comprised of M1, M2, and M3.

Figure 10.11: Output of the multi-layer percep-
tron.

{(0, 1), (1, 0)} to Class 0.2 See the plotting on y1 - y2 plane in Figure 10.8.

It is easy to see that the point (1, 1) in y1-y2 plane can be separated from the other points by a single
line, which can be done with another perceptron, say M3, taking (y1, y2) as input, and giving z as output:
z(ẏ) = g(ẇT

3 ẏ), where ẏ = (1, y1, y2)T . Figure 10.9 depicts the output z of M3 against input (y1, y2),
where the three points (0, 0), (0, 1), (1, 0) are shown in white, and the other point (1, 1) in red.

Figure 10.10 depicts the structure of the extended perceptron that consists of three basic perceptron
M1, M2, and M3. As you can see, it consists of two layers - the first layer consisting of M1 and M2,
and the second (output) layer consisting of M3. Note that the whole model is referred to as multi-layer
perceptron, and each basic perceptron (Mi, i=1, 2, 3) is usually referred to as cell, node or unit.

This example indicates that multi-layer perceptrons can form complex decision boundaries and regions.
Unfortunately, the original perceptron training algorithm is not applicable to multi-layer perceptrons,
but we can find weight vectors if the decision boundaries are piece-wise linear and the geometry of the
boundaries and regions is known. For example, the region of y1(ẋ) = 1 in Figure 10.6a is defined by
the following inequality.

− 0.5 + x1 + x2 ≥ 0. (10.23)

Thus we can use (−0.5, 1, 1)T , or generally (−0.5c, c, c)T , as the weight vector ẇ1 of M1, where c is an
arbitrary positive constant. The weight vectors of M2 and M3 can be found in the same manner.

2Note that we ignore the point (0, 0), since there is no input (x1, x2) that corresponds to that point.
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Exercises

1. Considering a two-class classification problem, where each class is modelled with a D-dimensional
Gaussian distribution. Derive the formula for the decision boundary, and show that it is quadratic
in x.

2. Considering a classification problem of two classes, whose discriminant function takes the form,
y(x) = wT x + w0.

• Show that the decision boundary is a straight line when D = 2.

• Show that the weight vector w is a normal vector to the decision boundary.

3. Regarding the perceptron weight update formula of Equation 10.22, show why the learning
parameter η needs to be positive.

4. Design a multi-layer perceptron which classifies an input vector (x1, x2) into Class 1 if the input
lies in the square (including the perimeter) whose four corners are {(1, 1), (1, 2), (2, 2), (1, 2)},
otherwise it classifies the input to Class 0. You should identify the structure of the perceptron
and weight vectors.

11


