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In the previous chapter we saw how we can combine a Gaussian probability density function with class
prior probabilities using Bayes’ theorem to estimate class-conditional posterior probabilities. For each
point in the input space we can estimate the posterior probability of each class, assigning that point to
the class with the maximum posterior probability. We can view this process as dividing the input space
into decision regions, separated by decision boundaries. In the next section we investigate whether
the maximum posterior probability rule is indeed the best decision rule (in terms of minimising the
number of errors). In the following sections we introduce discriminant functions which define the
decision boundaries, and investigate the form of decision functions induced by Gaussian pdfs with
different constraints on the covariance matrix.

1 Decision boundaries

We may assign each point in the input space as a particular class. This divides the input space into
decision regions R., such that a point falling in R, is assigned to class C. In the general case, a decision
region R, need not be contiguous, but may consist of several disjoint regions each associated with
class C. The boundaries between these regions are called decision boundaries.

Figure 1 shows the decision regions that result from assigning each point to the class with the maximum
posterior probability, using the Gaussians estimated for classes A, B and C from the example in the
previous chapter.

1.1 Placement of decision boundaries

Estimating posterior probabilities for each class results in the input space being divided into decision
regions, if each point is classified as the class with the highest posterior probability. But is this an
optimal placement of decision boundaries?

Consider a 1-dimensional feature space (x) and two classes ¢; and c¢,. A reasonable criterion for the
placement of decision boundaries is one that minimises the probability of misclassification. To estimate
the probability of misclassification we need to consider the two ways that a point can be classified
wrongly:

1. assigning x to ¢; when it belongs to ¢, (x is in decision region R; when it belongs to class ¢,);

2. assigning x to ¢, when it belongs to ¢; (x is in R, when it belongs to ¢;).

“Heavily based on notes inherited from Steve Renals and Iain Murray.
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Decision regions for 3—class example

Figure 1: Decision regions for the three-class two-dimensional problem from the previous chapter.
Class A (red), class B (blue), class C (cyan).

Thus the probability of the total error may be written as:
P(error) = P(x € Ry, c1) + P(x € Ry, ¢2).
Expanding the terms on the right hand side as conditional probabilities, we may write:

P(error) = P(x € Ry | ¢1) P(cy) + P(x € Ry | ¢3) P(c2). (N

1.2 Overlapping Gaussians

Figure 2 illustrates two overlapping Gaussian distributions (assuming equal priors). Two possible
decision boundaries are illustrated and the two regions of error are coloured.

We can obtain P(x € R; | ¢;) by integrating p(x|c;) within R,, and similarly for P(x € R, | ¢2), and
thus rewrite (1) as:

P(error) = f p(xlen) Pley) dx + f p(xle) Pey) dx. @
Ra Ri

Minimising the probability of misclassification is equivalent to minimising P(error). From (2) we can
see that this is achieved as follows, for a given x:

o if p(x|cy) P(cy) > p(x|cz) P(c,), then point x should be in region R;;
o if p(x|cy) P(cy) > p(x|cy) P(cy), then point x should be in region R,.

The probability of misclassification is thus minimised by assigning each point to the class with the
maximum posterior probability.

It is possible to extend this justification for a decision rule based on the maximum posterior probability
to d-dimensional feature vectors and K classes. In this case consider the probability of a pattern being
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Figure 2: Overlapping Gaussian pdfs. Two possible decision boundaries are shown by the dashed line.

The decision boundary on the left hand plot is optimal, assuming equal priors. The overall probability
of error is given by the area of the shaded regions under the pdfs.

correctly classified:

K
P(correct) = Z P(x € Ry, cx)
=

K
= P(xe Ry | c) Plcy)

k

Ell

1
L P(x | c) P(cy) dx.

=~

This performance measure is maximised by choosing the Ry such that each x is assigned to the class k
that maximises p(x|cx) P(ci). This procedure is equivalent to assigning each x to the class with the
maximum posterior probability.

Thus the maximum posterior probability decision rule is equivalent to minimising the probability of
misclassification. However, to obtain this result we assumed both that the class-conditional models are
correct, and that the models are well-estimated from the data.

2 Discriminant functions
If we have a set of K classes then we may define a set of K discriminant functions y;(x), one for each
class. Data point x is assigned to class c if

Ve(X) > yi(X) for all k # c.

In other words: assign x to the class ¢ whose discriminant function y.(x) is biggest.

This is precisely what we did in the previous chapter when classifying based on the values of the log
posterior probability. Thus the log posterior probability of class ¢ given a data point X is a possible
discriminant function:

y(x) = In P(c|x) = In p(x|¢) + In P(c) + const.
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The posterior probability could also be used as a discriminant function, with the same results: choosing
the class with the largest posterior probability is an identical decision rule to choosing the class with
the largest log posterior probability.

As discussed above, classifying a point as the class with the largest (log) posterior probability cor-
responds to the decision rule which minimises the probability of misclassification. In that sense, it
forms an optimal discriminant function. A decision boundary occurs at points in the input space where
discriminant functions are equal. If the region of input space classified as class ¢, (Ry) and the region
classified as class ¢, (R;) are contiguous, then the decision boundary separating them is given by:

Yr(X) = ye(X) .

Decision boundaries are not changed by monotonic transformations (such as taking the log) of the
discriminant functions.

Formulating a pattern classification problem in terms of discriminant functions is useful since it is
possible to estimate the discriminant functions directly from data, without having to estimate probability
density functions on the inputs. Direct estimation of the decision boundaries is sometimes referred
to as discriminative modelling. In contrast, the models that we have considered so far are generative
models: they could generate new ‘fantasy’ data by choosing a class label, and then sampling an input
from its class-conditional model.

3 Discriminant functions for class-conditional Gaussians

What is the form of the discriminant function when using a Gaussian pdf? As before, we take the
discriminant function as the log posterior probability:

Ve(x) = In P(c|x) = In p(x|c) + In P(c) + const.

1 1
=~ =) E (%  pr) = 5 In B+ In PCC). 3

We have dropped the term —1/2 In(2r), since it is a constant that occurs in the discriminant function
for each class. The first term on the left hand side of (3) is quadratic in the elements of x (i.e., if you
multiply out the elements, there will be some terms containing x? or x;x;).

4 Linear discriminants

Let’s consider the case in which the Gaussian pdfs for each class all share the same covariance matrix.
That is, for all classes ¢, X, =X. In this case X is class-independent (since it is equal for all classes),
therefore the term —1/2 In |X| may also be dropped from the discriminant function and we have:

1 -
Yel®) = =3 = )L (x = ) + In Plc).
If we explicitly expand the quadratic matrix-vector expression we obtain the following:
1
ye(X) = —E(XTZ‘IX X2y, "2 X+ g2 ) + In P(o) )
The mean p. depends on class c, but (as stated before) the covariance matrix is class-independent.
Therefore, terms that do not include the mean or the prior probabilities are class independent, and may

be dropped. Thus we may drop x” £™'x from the discriminant.
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Figure 3: Discriminant function for equal covariance Gaussians

We can simplify this discriminant function further. It is a fact that for a symmetric matrix M and
vectors a and b:
a’Mb = b"Ma.

Now since the covariance matrix X is symmetric, it follows that £7! is also symmetric'. Therefore:
x"27 ', = g2 x.
We can thus simplify (4) as:
1
yex) = plZ7'x - Eﬂf Z'p, +InP(c). ®)

This equation has three terms on the right hand side, but only the first depends on x. We can define two
new variables w. (d-dimension vector) and wo, which are derived from p., P(c), and X:

w! =l 6)
Weo = —%MT,E’I”C +1InP(c) = —%w{y( +InP(c). (7)

Substituting (6) and (7) into (5) we obtain:
Ye(X) = fo + Weo . (8)

This is a linear equation in d dimensions. We refer to w, as the weight vector and w, as the bias for
class c.

We have thus shown that the discriminant function for a Gaussian which shares the same covariance
matrix with the Gaussians pdfs of all the other classes may be written as (8). We call such discriminant
functions linear discriminants: they are linear functions of x. If x is two-dimensional, the decision
boundaries will be straight lines, illustrated in Figure 3. In three dimensions the decision boundaries
will be planes. In d-dimensions the decision boundaries are called hyperplanes.

5 Spherical Gaussians with equal covariance

Let’s look at an even more constrained case, where not only do all the classes share a covariance
matrix, but that covariance matrix is spherical: the oft-diagonal terms (covariances) are all zero, and

!'It also follows that x”%~'x > 0 for any x.
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the diagonal terms (variances) are equal for all components. In this case the matrix may be defined by
a single number, o2, the value of the variances:

where I is the identity matrix.

Since this is a special case of Gaussians with equal covariance, the discriminant functions are linear,
and may be written as (8). However, we can get another view of the discriminant functions if we write

them as:

lIx — peII”
Ye®) = =5+ P ©)

If the prior probabilities are equal for all classes, the decision rule simply assigns an unseen vector to
the nearest class mean (using the Euclidean distance). In this case the class means may be regarded as
class templates or prototypes.

Exercise: Show that (9) is indeed reduced to a linear discriminant.

6 Two-class linear discriminants

To get some more insights into linear discriminants, we can look at another special case: two-class
problems. Two class problems occur quite often in practice, and they are more straightforward to think
about because we are considering a single decision boundary between the two classes.

In the two-class case it is possible to use a single discriminant function: for example one which takes
value zero at the decision boundary, negative values for one class and positive values for the other. A
suitable discriminant function in this case is the log odds (log ratio of posterior probabilities):

P(c|x) _ pxlcr) P(c1)

P p(xle) T Pe)
=1Inpx|cy) — Inp(x|c;) + In P(c;) — In P(cy) . (10)

y(x) =In

Feature vector x is assigned to class ¢; when y(x) > O; x is assigned to class ¢, when y(x) < 0. The
decision boundary is defined by y(x) = 0.

If the pdf for each class is a Gaussian, and the covariance matrix is shared, then the discriminant
function is linear:
y(x) = w'x+wp,

where w is a function of the class-dependent means and the class-independent covariance matrix, and
the wy is a function of the means, the covariance matrix and the prior probabilities.

The decision boundary for the two-class linear discriminant corresponds to a (d — 1)-dimensional
hyperplane in the input space. Let x,a and x,,b be two points on the decision boundary. Then:

y(x,,a) =0= Y(an) .
And since y(x) is a linear discriminant:
wix,a +wo =0 = w'x,b + wy.

And a little rearranging gives us:
w!(x,a —x,b) = 0. (11)
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Figure 4: Geometry of a two-class linear discriminant

In three dimensions (11) is the equation of a plane, with w being the vector normal to the plane. In
higher dimensions, this equation describes a hyperplane, and w is normal to any vector lying on the
hyperplane. The hyperplane is the decision boundary in this two-class problem.

If x is a point on the hyperplane, then the normal distance from the hyperplane to the origin is given by:

wl'x

wo .
(= —=— (using y(x) = 0),
Wil Tiwil gy

which is illustrated in Figure 4.



