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In the previous chapter we introduced the use of Bayes’ Theorem for pattern classification. For a test
vector x, we estimate the posterior probability P(ck |x) for each class ck. To classify x we choose the
class with the largest estimated posterior probability. To do this we re-express the posterior probabilities
using Bayes’ Theorem:

P(ck |x) =
P(x |ck) P(ck)

P(x)

∝ P(x |ck) P(ck).

Thus for each class we need to provide an estimate of the likelihood P(x |ck) and the prior P(ck).

To estimate the likelihood we need a statistical model which can provide a likelihood estimate. In the
“fish” example, the likelihood was estimated using a histogram for each class: the likelihood of a fish
with length x coming from class ck was estimated as the relative frequency of fish of length x estimated
from the training data for class ck.

Imagine if in addition to the length we also had some other information such as weight and circumfer-
ence. In this case, the input feature vector for each fish would contain 3 elements: (length, weight,
circumference). If we have 20 possible values for each feature, then the number of bins in a histogram
of these vectors would be 203 =8000. In this case 100 examples per class would mean that it is not
possible to observe examples for the vast majority of the bins. We would need many more examples
to obtain reasonable estimates based on relative frequencies. As the number of feature dimensions
increases, the total number of possible feature vectors increases exponentially.

This severe difficulty that arises from moving to spaces of higher dimension was termed the curse of
dimensionality by Richard Bellman in the 1950s. This is a critical problem: it becomes impossible to
reliably estimate histograms once we have more than a few dimensions, even if we have millions of
examples.

In this chapter we shall look at an approach to the problem called the Naive Bayes approximation.
After showing how it works in a small, fictitious example, we’ll go on to see how this approach may be
applied to the problem of text classification, which uses high-dimensional feature vectors (e.g., 104- to
107-dimensional).

1 The Naive Bayes assumption

One way to deal with the curse of dimensionality is to assume that the different feature dimensions
are independent. If we are using histograms of relative frequencies to estimate likelihoods, then this

∗Heavily based on notes inherited from Steve Renals and Iain Murray.

1

Learning and Data Note 6 Informatics 2B

means that we construct, for each class, d 1-dimensional histograms, rather than a single d-dimensional
histogram. If we assume that each dimension can take m values, we now only need to estimate dm
relative frequencies, rather than md relative frequencies!

Consider a d-dimensional feature vector x= (x1, x2, . . . , xd). We write the probability of a data point x
given class ck as a joint distribution of the d components of x (equation 1). We can re-express any joint
distribution as a product of conditional distributions using successive applications of the product rule
(equation 2). The result is known as the chain rule of probability, which in this case is:

P(x |ck) = P(x1, x2, . . . , xd |ck) (1)
= P(x1 | x2, . . . , xd, ck) P(x2 | x3, . . . , xd, ck) . . . P(xd−1 | xd, ck) P(xd |ck). (2)

This decomposition in itself doesn’t address the curse of dimensionality, since the first term on the
right-hand side of (2) is conditioned on (d − 1) terms, the second on (d − 2) terms, and so on.

However we can simplify things if we naively assume that the individual feature dimensions (x1, x2, . . . , xd)
are independent, that is:

P(x1 | x2, . . . , xd, ck) = P(x1 |ck)
P(x2 | x3, . . . , xd, ck) = P(x2 |ck)

...

This is called the Naive Bayes assumption. The assumption is drastic and rarely true: for example,
in the above case Naive Bayes states that the length of a male fish is independent of its weight and
circumference. However making this approximation allows us to have a much simpler form for the
likelihood, since (2) is simplified to:

P(x |ck) ' P(x1 |ck) P(x2 |ck) . . . P(xd |ck) =

d∏

i=1

P(xi |ck). (3)

We have approximated the probability of a d-dimensional feature vector as a product of d probabilities
of the 1-dimensional feature vectors.

Using this assumption, we can express Bayes’ theorem as follows:

P(ck |x) =
P(x |ck) P(ck)

P(x)
(4)

'
∏d

i=1 P(xi |ck) P(ck)∏d
i=1 P(xi)

∝ P(ck)
d∏

i=1

P(xi |ck) (5)

2 Example

The following (fictitious) example comes from the book Data Mining by Witten and Frank.

Consider a game which is played or not depending on the weather conditions: outlook (sunny / overcast
/ rainy), temperature (hot / mild / cool), humidity (high / normal) and windy (true / false). The input
variable is 4-dimensional, with 2 or 3 values per dimension. There are 36 possible combinations
(3 × 3 × 2 × 2).

We have an input training set of 14 examples, shown in table 1. As is usually the case in machine
learning, there are fewer training examples than possible settings of the input variables; most possible
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Outlook Temperature Humidity Windy Play
sunny hot high false NO
sunny hot high true NO

overcast hot high false YES
rainy mild high false YES
rainy cool normal false YES
rainy cool normal true NO

overcast cool normal true YES
sunny mild high false NO
sunny cool normal false YES
rainy mild normal false YES
sunny mild normal true YES

overcast mild high true YES
overcast hot normal false YES

rainy mild high true NO

Table 1: Training data for the weather example

Outlook Y N

sunny 2 3
overcast 4 0
rainy 3 2

Temperature Y N

hot 2 2
mild 4 2
cool 3 1

Humidity Y N

high 3 4
normal 6 1

Windy Y N

false 6 2
true 3 3

Table 2: Play counts for different weather conditions.

Outlook Y N

sunny 2/9 3/5
overcast 4/9 0/5
rainy 3/9 2/5

Temperature Y N

hot 2/9 2/5
mild 4/9 2/5
cool 3/9 1/5

Humidity Y N

high 3/9 4/5
normal 6/9 1/5

Windy Y N

false 6/9 2/5
true 3/9 3/5

Table 3: Play relative frequencies for different weather conditions. There was play on 9/14 cases.
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conditions are not directly observed. We can tabulate the data in terms of the frequencies for each
of the four input variables (table 2), and in terms of the relative frequencies (table 3). The relative
frequencies can be used as probability estimates, for example P(T =h | Play=Y) = 2/9.
We are given the following test example:

Outlook Temp. Humidity Windy Play

sunny cool high true ?

This example’s feature vector, x, was not observed in the training set. We can generalise from the other
examples by using Naive Bayes:

P(play=Y | x) ∝ P(play=Y) · P(O= s | play=Y) · P(T =c | play=Y)
· P(H =h | play=Y) · P(W = t | play=Y)

=
9

14
· 2

9
· 3

9
· 3

9
· 3

9
= 0.0053

P(play= N | x) ∝ P(play= N) · P(O= s | play= N) · P(T =c | play= N)
· P(H =h | play= N) · P(W = t | play= N)

=
5

14
· 3

5
· 1

5
· 4

5
· 3

5
= 0.0206

And the ratio of posterior probabilities is:

P(play=Y | x)
P(play= N | x)

=
0.0053
0.0206

∼ 0.26

Hence we classify x as play= N.

3 Conclusion

In this chapter we have introduced the Naive Bayes approximation. When we have a multidimensional
feature vector, Naive Bayes approximated the likelihoods by considering each feature dimension to be
independent:

P(x1, x2, x3 |C) ' P(x1 |C) · P(x2 |C) · P(x3 |C),

which approximates a d-dimensional distribution as d 1-dimensional distributions. If each dimension
can take m different values, we need only estimate md probabilities, rather than md probabilities.
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