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Informatics 2B consists of two threads.

1. Algorithms and Data Structures: how to efficiently store data and efficient algorithms for
basic tasks such as sorting and searching. (Kyriakos Kalorkoti — KK)

2. Learning and Data: building models to describe a data set and making predictions about new
data. (Hiroshi Shimodaira)

Prerequisites You should have taken Informatics 1; in particular Inf1 — Data and Analysis is
relevant to this thread. We use some Calculus and some Linear Algebra in this course, but we will
revise and refresh what is needed as we go along.

Books There is no required textbook, but some good books include:

• Simon Rogers and Mark Girolami, A First Course in Machine Learning, CRC, 2012.

• Tom Mitchell, Machine Learning, McGraw Hill, 1997.

• Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,
2003.

Some more advanced books include:

• Ian H. Witten and Eibe Franke, Data Mining: Practical Machine Learning Tools and Techniques,
Morgan Kaufmann, 2005.

• Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

• David J.C. MacKay, Information Theory, Inference, and Learning Algorithms, CUP, 2003.

• R Duda, P Hart and D Stork, Pattern Classification, 2nd Ed., Wiley, 2001.

• Kevein P. Murphy, Machine Learning, The MIT Press, 2012.

• T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd Ed., Springer
2009. (http://statweb.stanford.edu/˜tibs/ElemStatLearn)

This book demonstrates some of the ideas we cover in this course, applied in a ‘Web 2.0’ setting:

• Toby Segaran, Programming Collective Intelligence, O’Reilly, 2007.
∗Heavily based on notes inherited from Steve Renals and Iain Murray.
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Online resources Wikipedia (http://en.wikipedia.org/) has good coverage of several of the
topics that we will cover.

1 Motivation

Given some data, what might we do with it? In the algorithms and data structures thread you will
learn about how to design and analyse algorithms and data structures to sort data and to search for
items in a data set, in a correct, efficient and simple manner. In this thread we are more concerned with
algorithms and models that can make predictions about new data items, given the data that has already
been observed. For example, we may want to:

• assign a new data item to its class (classification);

• predict the next item in a sequence (time series prediction);

• predict an output given a new input (regression).

Léon Bottou (http://leon.bottou.org/research/largescale) puts things in an interesting
way:

For the sake of the argument, assume that there are only two categories of computers. The
first category, the makers, directly mediate human activity. They implement the dialogue
between sellers and buyers, run the accounting department, control industrial processes,
route telecommunications, etc. The makers generate and collect huge quantities of data.
The second category, the thinkers, analyse this data, build models, and draw conclusions
that direct the activity of the makers.

In this thread we are concerned with the thinkers. Let’s look at some examples.

Handwritten digit recognition Figure 1a shows some examples of the digits 0–9, written by
people, then scanned and digitised. Each digit image is associated with one of the ten digit classes. If
an image of a new digit is observed, the task is to classify it correctly. To do this, we must decide on a
representation for the images, and learn a way of associating such a representation to a class. This is a
classification problem.

Load forecasting For the electricity industry, being able to predict the demand for power — as
far in advance as possible — is extremely important in order to schedule maintenance, buy fuel as
cheaply as possible, minimise overhead, and so on. A typical problem is to predict the hourly electricity
demand several days in advance. There are many factors to consider such as weather conditions, time
of day, day of the week, holidays, and so on. The problems to be addressed are how the factors are to
be represented, and given such a representation how to estimate the load. This is a regression problem.

Predicting currency exchange rates Given a history of currency exchange rates (the exchange
rate recorded each day, hour, minute, . . . ) how accurately can the next value in the time series be
predicted?
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(a) Set of digitised characters (b) Digitised character ‘8’

Figure 1: Handwritten digits, captured by a camera and digitised. This data was collected and
distributed by Alex Seewald, http://alex.seewald.at/digits/

Recommender systems Given my shopping history, how can an online store recommend items to
me that I might want to buy?

Spam Filtering Filter out the unwanted spam mail messages, whilst not losing any of the non-spam
messages.

Speech recognition What is the sequence of words that corresponds to an acoustic signal?

Medical diagnosis Given a set of measurements relating to a patient, what condition should be
diagnosed?

Robot navigation Given a set of observations about the world, what actions should a robot take to
achieve a goal?

2 Data

In this thread we are interested in discovering patterns in data, and using those patterns to make
predictions or perform classifications. People are naturally good at exploiting patterns, Witten and
Frank give several examples: hunters seek patterns in animal migrations, farmers seek patterns in
crop growth, politicians look for patterns in the electorate, lovers look for patterns in their partners’
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Figure 2: Preprocessed digit image on an 8x8 grid

responses to them. Indeed, the process of science involves finding patterns in data, making predictions
based on those patterns, and verifying the predictions.
Data comes from many places:

• Sensors such as microphones, cameras, machine monitoring

• Social/economic records such as currency exchange rates, prices

• Artificially created such as possible parses of a sentence, possible object code generated by a
compiler

And it needs to be kept in a machine readable electronical form, but it can come in different forms:

• Numeric: numbers such as sound pressure levels obtained from a microphone

• Nominal: categories such as a red, blue and green; or the words in a language

• Ordinal: symbolic data that can be ranked such as grades from “very easy” to “very difficult”

2.1 Example: Handwritten digits

As an example let’s look at how we might represent a handwritten digit, such as the digit 8 in Figure 1b.
First, we need to extract an image of an individual digit, since the raw data is likely to be sequences of
characters (e.g., an address on an envelope, a handwritten cheque). This process, called segmentation,
is in itself non-trivial! Once the individual digit images are extracted they need to be normalised,
for example they need to be scaled to be the same size (imagine that each digit is scaled to fit in a
rectangle of a fixed size). These preprocessing operations result in a set of segmented and normalised
digit images (Figure 1a). We will assume that there exists an automatic process that can perform the
segmentation and normalisation operations.

Binary representation

Preprocessing removes quite a lot of the variability between images: the location and scale of the
images are now the same. Once the images are all fitted to similar sized boxes, the next task is to find
a way to represent them in away that is suitable for the process or machine that will associate digit
images with the 10 possible classes (0–9). One way to do this is to divide each box into a grid. Figure
2 shows the digit image from Figure 1b on an 8 × 8 grid. We could represent each cell in the grid by a
binary value: 0 if there is no ink in that location, 1 if there is. This would result in something like the
one shown in Figure 3 for the example image.

We now have a grid of numbers. How can we represent such a grid? One way is as a 64-bit (8× 8 = 64)
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0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0

Figure 3: Binary representation of the digit image with an 8x8 grid

binary number:
0000011100001001000110100001110000111000111100001001100011110000
This has the advantage of being compact, but treating the bits as part of a single number means that
some are more significant than others—changing the first bit has a bigger effect than changing the last
bit.

Another way is as a 8-by-8 matrix, e.g. B = (bi j), 1 ≤ i ≤ 8, 1 ≤ j ≤ 8, so that each element bi j

corresponds to the grid (i, j), i.e., the cell at i’th row and j’th column.

B =



0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0
1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0



Binary vector representation

Recognising digit images will always require a way of measuring the similarity between images
(we assume that images of the same digit class are in some way similar). Thus we would like a
representation that tells us that the above binary grid is similar to this one:

0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0
0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0

A natural way to do this is by converting the corresponding 8-by-8 matrix into a 64-element vector 1:
(0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, . . . , 0, 0, 0)T

1The conversion shown here was done in row-wise, i.e., the first row of the matrix was copied into the vector first,
followed by copying the second row, and so on. It could be done in column-wise, of course.
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Notation: (·)T means transpose, allowing us to write a column vector on a single line to save space.
Having the two images represented as vectors, a and b for example, we can now tell how they are
similar to each other by calculating the distance (e.g. Euclidean distance) between a and b.

You will have come across 2- and 3-dimensional vectors when you have studied vector geometry. The
concept can be extended to higher dimensions and the mathematics (scalar product, distance, and so
on) remains the same. We are representing the images in a high-dimensional space (64 dimensions in
this case), where each dimension corresponds to a pixel value.

Real-valued vectors

It was not completely accurate to write that we assigned the binary number to each grid location as “0
if there is no ink in that location, 1 if there is”. In fact what we did was to choose a threshold on how
much grey colour there was in each location. If a location was above threshold we assigned it value 1,
otherwise it was assigned 0.

An alternative to hard thresholding would be to set the value for each location to a real number,
between 0 and 1, such that 0 is completely white and 1 is completely black, with numbers in between
corresponding to the amount of grey. In this case our vector might look like:
(0.00, 0.00, 0.00, 0.00, 0.02, 0.55, 0.66, 0.78, 0.00, 0.00, 0.00, 0.01, 0.70, . . . , 0.00, 0.00, 0.00)T

This type of representation is used in many problems, and we will be dealing with such multidimen-
sional vector representations in a lot of this course. They are often referred to as feature vectors.

2.2 Example: Recommender Systems

You can get recommendations for things like films, games, music by asking your friends and by reading
reviews. And you know some of your friends have tastes similar to your own (and some of them don’t).
But what if there is a new film your friends haven’t seen yet? Or if none of your friends have quite
the same likes and dislikes as you? A recommender system (also called collaborative filtering) works
by looking at large groups of people and seeing which among them buy or rent or download similar
things to you. Such a system can then combines the lists of things that they like, to provide a list of
things that you might like.

The film rental company Netflix uses recommender systems to suggest films you might like to watch.
They instituted the Netflix Prize (http://www.netflixprize.com) to improved the quality of
recommender systems. The description provided by Netflix gives a good idea of what recommender
systems do, and the framework in which they are constructed:

Netflix is all about connecting people to the movies they love. To help customers find those movies,
we’ve developed our world-class movie recommendation system: Cinematch. Its job is to predict
whether someone will enjoy a movie based on how much they liked or disliked other movies. We
use those predictions to make personal movie recommendations based on each customer’s unique
tastes. And while Cinematch is doing pretty well, it can always be made better.

Now there are a lot of interesting alternative approaches to how Cinematch works that we haven’t
tried. Some are described in the literature, some aren’t. We’re curious whether any of these can
beat Cinematch by making better predictions. Because, frankly, if there is a much better approach
it could make a big difference to our customers and our business.

So, we thought we’d make a contest out of finding the answer. It’s “easy” really. We provide
you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than
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Figure 4: Automatically generated recommendations from http://www.amazon.co.uk

what Cinematch can do on the same training data set. (Accuracy is a measurement of how closely
predicted ratings of movies match subsequent actual ratings.)

(The bar was finally beaten in summer 2009, after 3 years of competition.)

What does the data used by a recommender system look like? You can think of it as a large matrix of
people (recommenders) vs. items (e.g. films). Each cell (i, j) of the matrix gives the value that person i
gives to item j. In the case of Netflix, this is a whole number from 1–5, representing the rating that
the person gave to the film (1-star to 5-stars); for a website recommender it might be 1 (liked), 0 (no
preference), -1 (didn’t like); for an online store it might be 2 (bought), 1 (browsed), 0 (didn’t buy).

In many cases this matrix is sparse: most people have not seen most films.

3 Learning

We are interested in learning from the data that we have observed, in order to make predictions about
new data points. But what do we mean by learning? Chambers’ dictionary defines the verb learn as
follows:

to be informed; to get to know; to gain knowledge, skill, or ability.

It is not obvious to see how this translates to the computational setting. What does it mean to inform a
computer? How can we determine or measure whether a computer has gained a skill? Rather than
worrying about such philosophical issues, we will use the following definition, based on that in Tom
Mitchell’s book:

Machine learning is the study of models and algorithms that improve automatically through
experience.

There are still some problems with this definition:
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1. What do we mean by improve?

2. What is experience?

For a system to improve then it must have some kind of purpose, for example classifying digit images
to the correct digit class. If the system improves, then it classifies more accurately. Putting it another
way, it makes fewer errors. In machine learning we need to be able to measure improvement in terms
of a mathematical function that may measure the error, or measure how well the system models the
data. The choice of this function, and the way the system is modified to improve the function, is the at
the core of machine learning.

By experience we mean the observed data. In the case of digit recognition, experience corresponds to
a set of images together with their correct classes. In the case of a film recommender system, it is a set
of ratings given to films by a large group of users.

4 Notation

The following is the default notation used in the course. Please note that different version may be used
sometimes for the ease of readability.

x A scalar
x A column vector : x = (x1, x2, . . . , xd)T , where d is the dimension of vector
xT Transpose of vector x, meaning a row vector if x is a column vector
xi i’th sample (scalar), or i’th element of vector x
xi i’th sample (vector): xi = (xi1, xi2, . . . , xid)

‖x‖ Euclidean or L2 norm, i.e.,
√∑d

k=1 x2
k

‖x‖1 L1 norm, i.e.
∑d

k=1 |xk|
A A matrix: A = (ai j). If A is a M-by-N matrix, A = (a1, . . . , aN)
Ai j Element of matrix A at i’th row and j’th column, i.e. ai j

I or Id Identity matrix of size d by d (ones on diagonal, zeros off)
AT Transpose of matrix A, i.e. AT = (a ji)
A−1 Inverse of matrix A, i.e. A−1A = AA−1 = I
|A| or det(A) Determinant of matrix A
tr(A) Trace of matrix A
{xn}N1 A set of samples: {x1, . . . , xN}
x̄ sample mean of x
s or sx sample variance of x
µ population mean
σ2 population variance
exp(x) The natural exponential function of x, i.e. ex

ln(x) The natural logarithm of x
δi j Kronecker delta, i.e. δi j = 1 (if i = j), 0 (if i , j)
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