	Today's Schedule	Training of neural networks (recap)
Inf2b Learning and Data Lecture 15: Multi-layer neural networks (2) Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals) Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh Jan-Mar 2014	 Training of neural networks (recap) Activation functions Experimental comparison of different classifiers Overfitting and generalisation Deep Neural Networks 	 Optimisation problem (training): min E(w) = min 1/2 ∑_{n=1}^N y⁽ⁿ⁾ - t⁽ⁿ⁾ ² No analytic solution (no closed form) Employ an iterative method (requires initial values) e.g. Gradient descent (steepest descent), Newton's method, Conjugate gradient methods Gradient descent w_i^(new) ← w_i - η ∂/∂w_i E(w), (η > 0)
Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 1	Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 2	Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 3
Training of the single-layer neural network (recap)	Multi-layer neural networks (recap)	The derivatives of the error function (two-layers) (recap)
$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y^{(n)} - t^{(n)} \right)^{2} = \frac{1}{2} \sum_{n=1}^{N} \left(g(a^{(n)}) - t^{(n)} \right)^{2}$ where $a^{(n)} = \sum_{i=0}^{d} w_{i} x_{i}^{(n)}$. $\frac{\partial a^{(n)}}{\partial w_{i}} = x_{i}^{(n)}$ $\frac{\partial E(\mathbf{w})}{\partial w_{i}} = \frac{\partial E(\mathbf{w})}{\partial y^{(n)}} \frac{\partial y^{(n)}}{\partial a^{(n)}} \frac{\partial a^{(n)}}{\partial w_{i}}$ $= \sum_{n=1}^{N} (y^{(n)} - t^{(n)}) \frac{\partial g(a^{(n)})}{\partial a^{(n)}} \frac{\partial a^{(n)}}{\partial w_{i}}$ $= \sum_{n=1}^{N} (y^{(n)} - t^{(n)}) g'(a^{(n)}) x_{i}^{(n)}$ In the law minimum of the equation o	Multi-layer perceptron (MLP) • Hidden-to-output weights: $w_{kj}^{[2]} \leftarrow w_{kj}^{[2]} - \eta \frac{\partial E}{\partial w_{kj}^{[2]}}$ • Input-to-hidden weights: $w_{ji}^{[1]} \leftarrow w_{ji}^{[1]} - \eta \frac{\partial E}{\partial w_{ji}^{[1]}}$	$\begin{split} E^{(n)} &= \frac{1}{2} \sum_{k=1}^{\kappa} (y_k^{(n)} - t_k^{(n)})^2 \\ y_k^{(n)} &= g(a_k^{(n)}), a_k^{(n)} &= \sum_{j=1}^{M} w_{kj}^{(2)} z_j^{(n)} \\ z_j^{(n)} &= h(b_j^{(n)}), b_j^{(n)} &= \sum_{i=0}^{d} w_{ji}^{(1)} x_i^{(n)} \\ \frac{\partial E^{(n)}}{\partial w_{kj}^{[2]}} &= \frac{\partial E^{(n)}}{\partial y_k^{(n)}} \frac{\partial y_k^{(n)}}{\partial a_k^{(n)}} \frac{\partial a_k^{(n)}}{\partial w_{kj}^{[2]}} \\ &= (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) z_j^{(n)} \\ \frac{\partial E^{(n)}}{\partial w_{ji}^{[1]}} &= \frac{\partial E^{(n)}}{\partial z_j^{(n)}} \frac{\partial z_j^{(n)}}{\partial b_j^{(n)}} \frac{\partial b_j^{(n)}}{\partial w_{ji}^{[1]}} = \left(\sum_{k=1}^{\kappa} (y_k^{(n)} - t_k^{(n)}) \frac{\partial y_k^{(n)}}{\partial z_j^{(n)}} \right) h'(b_j^{(n)}) x_i^{(n)} \\ &= \left(\sum_{k=1}^{\kappa} (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) w_{kj}^{[2]}\right) h'(b_j^{(n)}) x_i^{(n)} \\ &= \left(\sum_{k=1}^{\kappa} (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) w_{kj}^{[2]}\right) h'(b_j^{(n)}) x_i^{(n)} \end{split}$
Error back propagation (recap)	Some questions on activation functions	Logistic sigmoid vs a linear output node
$\begin{aligned} \frac{\partial E^{(n)}}{\partial w_{kj}^{[2]}} &= \frac{\partial E^{(n)}}{\partial y_{k}^{(n)}} \frac{\partial y_{k}^{(n)}}{\partial a_{k}^{(n)}} \frac{\partial a_{k}^{(n)}}{\partial w_{kj}^{[2]}} \\ &= (y_{k}^{(n)} - t_{k}^{(n)}) g'(a_{k}^{(n)}) z_{j}^{(n)} \\ &= \delta_{k}^{[2](n)} z_{j}^{(n)}, \delta_{k}^{[2](n)} = \frac{\partial E^{(n)}}{\partial a_{k}^{(n)}} \\ \frac{\partial E^{(n)}}{\partial w_{ji}^{[1]}} &= \frac{\partial E^{(n)}}{\partial z_{j}^{(n)}} \frac{\partial z_{j}^{(n)}}{\partial b_{j}^{(n)}} \frac{\partial b_{j}^{(n)}}{\partial w_{ji}^{[1]}} \\ &= \left(\sum_{k=1}^{K} (y_{k}^{(n)} - t_{k}^{(n)}) g'(a_{k}^{(n)}) w_{kj}^{[2]}\right) h'(b_{j}^{(n)}) x_{i}^{(n)} \\ &= \left(\sum_{k=1}^{K} \delta_{k}^{[2](n)} w_{kj}^{[2]}\right) h'(b_{j}^{(n)}) x_{i}^{(n)} \end{aligned}$	 Is the logistic sigmoid function necessary for single-layer single-output-node network? No, in terms of classification. We can replace it with g(a) = a. However, decision boundaries can be different. (NB: A linear decision boundary (a = 0.5) is formed in either case.) What benefits are there in using the logistic sigmoid function in the case above? The output can be regarded as a posterior probability. Compared with a linear output node (g(a) = a), 'logistic regression' normally forms a more robust decision boundary against noise. 	Binary classification problem with the least squares error (LSE): $g(a) = \frac{1}{1 + \exp(-a)} \text{vs} g(a) = a$ $\int_{a}^{a} \int_{a}^{a} \int_{$

• Gaussian classifier: (2-dimensional) Gaussian for each

class. Training involves estimating mean vector and covariance matrix for each class, assume equal priors. (50

• Single layer network: 2 inputs, 10 outputs. Iterative

• MLP: two inputs, 25 hidden units, 10 outputs. Trained

by gradient descent (backprop). (335 parameters)
For SLN and MLP normalise feature vectors to mean=0

 m_i is sample mean of feature *i* computed from the

training of weight matrix. (30 parameters)

parameters)

and sd=1:

 $z_i^n = \frac{x_i^n - mi}{2}$

training set, s_i is standard deviation.

Peterson-Barney F1-F2 Gaussian Decision Regions

Decision Regions: Gaussian classifier

£

F2/1

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)

Gaussian classifier:

MLP:

Single layer network: 85.5% correct

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)

86.5% correct

86.5% correct

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)

F1/Hz

Obstacles to multi-layer neural networks	Overfitting and generalisation	Overfitting and generalisation
 Still difficult to train Computationally very expensive (e.g. weeks of training) Slow convergence ('vanishing gradients') Difficult to find the optimal network topology Poor generalisation (under some conditions) Very good performance on the training set Poor performance on the test set 	Example of curve fitting by a polynomial function: $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{k=0}^M w_k x^k$ $u_{after}^{after} \int_{x=0}^{after} u_{after}^{after} \int_{x=0}^{after} u_{after}^{after}$	Data set Training test validation model complexity reliability (generalization) fraining-set parameters # training samples # parameters
Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 19	Inf2b Learning and Data: Lecture 15 Multi-Jayer neural networks (2) 20	Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 21
• How many hidden units (or, how many weights) do we need? • Optimising training set performance does not necessarily optimise test set performance • Network too flexible: Too many weights compared with number of training examples • Network not flexible enough: Not enough weights (hidden units) to represent the desired mapping • Generalisation Error: The predicted error on unseen data. How can the generalisation error be estimated? • Training error? $E_{\text{train}} = \frac{1}{2} \sum_{\text{trainingset}} \sum_{k=1}^{K} (y_k - t_k)^2$ • Cross-validation error? $E_{\text{xval}} = \frac{1}{2} \sum_{\text{validationset}} \sum_{k=1}^{K} (y_k - t_k)^2$	 Optimise network performance given a fixed training set Hold out a set of data (validation set) and predict generalisation performance on this set Train network in usual way on training data Estimate performance of network on validation set If several networks trained on the same data, choose the one that performs best on the validation set (not the training set) <i>k</i>-fold Cross-validation: divide the data into <i>k</i> partitions; select each partition in turn to be the validation set, and train on the remaining (<i>k</i> - 1) partitions. Estimate generalisation error by averaging over all validation sets. 	 Overtraining in neutral networks Overtraining (overfitting) corresponds to a network function too closely fit to the training set (too much flexibility) Undertraining corresponds to a network function not well fit to the training set (too little flexibility) Solutions If possible increasing both network complexity in line with the training set size Use prior information to constrain the network function Control the flexibility: Structural Stabilisation Control the effective flexibility: early stopping and regularisation
Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 22	Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 23	Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 24
Early stopping ^(†)	Early stopping	Regularisation — Penalising complexity ^(†)

- Use validation set to decide when to stop training
- Training Set Error monotonically decreases as training progresses
- Validation Set Error will reach a minimum then start to increase
- Effective Flexibility increases as training progresses
- Network has an increasing number of effective degrees of freedom as training progresses
- Network weights become more tuned to training data
- Very effective used in many practical applications such as speech recognition and optical character recognition

Validation Training t* t

Е

• Original error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{t}^{(n)}||^2$$

• Regularised error function

26

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{t}^{(n)}||^2 + \frac{\beta}{2} \sum_{\ell} ||\mathbf{w}||^2$$

- Error back propagation training
- Logistic sigmoid vs linear node
- Decision boundaries
- Overfitting vs generalisation
- (Feed-forward network vs RNN)

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)