
Inf2b Learning and Data
Lecture 15: Multi-layer neural networks (2)

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics

University of Edinburgh

Jan-Mar 2014

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 1

Today’s Schedule

1 Training of neural networks (recap)

2 Activation functions

3 Experimental comparison of different classifiers

4 Overfitting and generalisation

5 Deep Neural Networks

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 2

Training of neural networks (recap)

Optimisation problem (training):

min
w

E (w) = min
w

1

2

N∑

n=1

|| y(n) − t(n) ||2

No analytic solution (no closed form)

Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton’s
method, Conjugate gradient methods

Gradient descent

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 3

Training of the single-layer neural network (recap)

E (w) =
1

2

N∑

n=1

(
y (n) − t(n)

)2
=

1

2

N∑

n=1

(
g(a(n))− t(n)

)2

where a(n) =
d∑

i=0

wix
(n)
i .

∂ a(n)

∂wi
= x

(n)
i

∂E (w)

∂wi
=

∂E (w)

∂y (n)
∂y (n)

∂a(n)
∂a(n)

∂wi

=
N∑

n=1

(y (n) − t(n))
∂ g(a(n))

∂a(n)
∂ a(n)

∂wi

=
N∑

n=1

(y (n) − t(n)) g ′(a(n)) x (n)i

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 4

Multi-layer neural networks (recap)

Multi-layer perceptron (MLP)

(1) (1)

(2)
(2)

KM

10

10

Md

ww

w w

M

d

1

i

j0

1

1

0

k K

z

x x

y y

x

y

z

x

z z

g

h h h

g g

Hidden-to-output weights:

w
[2]
kj ← w

[2]
kj − η

∂E

∂w
[2]
kj

Input-to-hidden weights:

w
[1]
ji ← w

[1]
ji − η

∂E

∂w
[1]
ji

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 5

The derivatives of the error function (two-layers) (recap)

E (n) =
1

2

K∑

k=1

(y
(n)
k −t

(n)
k)2

y
(n)
k = g(a

(n)
k), a

(n)
k =

M∑

j=1

w
[2]
kj z

(n)
j

z
(n)
j = h(b

(n)
j), b

(n)
j =

d∑

i=0

w
[1]
ji x

(n)
i

(2)

(1)

(2)

(1)

10 Md

KM10w w

w w

0 d

1 M

i

k

0 j

1 K

1

z

y

z

x x

y y

z

xx

z

h h

gg g

h

(1) (1)

(2)
(2)

10

KM10

Md

w

ww

w

i0

K1

j

d

k

M0 1

1 x

z z

x

zz

x x

y y y

h

gg g

h h

(1)

(2)

(1)

(2)

(1)
Md

KM

ji

10

10w

ww

w
w

M

d

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

∂E (n)

∂w
[2]
kj

=
∂E (n)

∂y
(n)
k

∂y
(n)
k

∂a
(n)
k

∂a
(n)
k

∂w
[2]
kj

= (y
(n)
k −t

(n)
k) g ′(a(n)k) z

(n)
j

∂E (n)

∂w
[1]
ji

=
∂E (n)

∂z
(n)
j

∂z
(n)
j

∂b
(n)
j

∂b
(n)
j

∂w
[1]
ji

=
(K∑

k=1

(y
(n)
k −t

(n)
k)

∂y
(n)
k

∂z
(n)
j

)
h′(b(n)j) x

(n)
i

=
(K∑

k=1

(y
(n)
k −t

(n)
k)g ′(a(n)k)w

[2]
kj

)
h′(b(n)j) x

(n)
i

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 6

Error back propagation (recap)

∂E (n)

∂w
[2]
kj

=
∂E (n)

∂y
(n)
k

∂y
(n)
k

∂a
(n)
k

∂a
(n)
k

∂w
[2]
kj

= (y
(n)
k −t

(n)
k) g ′(a(n)k) z

(n)
j

= δ
[2](n)
k z

(n)
j , δ

[2](n)
k =

∂E (n)

∂a
(n)
k

(1)

(2)

(1)

(2)

(1)
Md

KM

ji

10

10w

ww

w
w

M

d

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

(1)

(2)

(1)

(2)

(1)
Md

KM

ji

10

10w

ww

w
w

M

d

1

i

j0

k K1

10

zz

yy

x x x

y

x

zz

gg

h

g

h h

∂E (n)

∂w
[1]
ji

=
∂E (n)

∂z
(n)
j

∂z
(n)
j

∂b
(n)
j

∂b
(n)
j

∂w
[1]
ji

=
(K∑

k=1

(y
(n)
k −t

(n)
k)g ′(a(n)k)w

[2]
kj

)
h′(b(n)j) x

(n)
i

=
(K∑

k=1

δ
[2](n)
k w

[2]
kj

)
h′(b(n)j) x

(n)
i

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 7

Some questions on activation functions

Is the logistic sigmoid function necessary for single-layer
single-output-node network?

No, in terms of classification.
We can replace it with g(a) = a. However, decision
boundaries can be different. (NB: A linear decision
boundary (a = 0.5) is formed in either case.)

What benefits are there in using the logistic sigmoid
function in the case above?

The output can be regarded as a posterior probability.
Compared with a linear output node (g(a) = a), ’logistic
regression’ normally forms a more robust decision
boundary against noise.

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 8

Logistic sigmoid vs a linear output node

Binary classification problem with the least squares error (LSE):

g(a) =
1

1 + exp(−a)
vs g(a) = a

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

(after Fig 4.4b in PRML C. M. Bishop (2006))
Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 9

Different implementations of gradient descent

E (w) =
1

2

N∑

n=1

|| y(n) − t(n) ||2 =
1

2

N∑

n=1

K∑

k=1

(y
(n)
k − t

(n)
k)2

=
N∑

n=1

E (n), where E (n) =
1

2

K∑

k=1

(y
(n)
k − t

(n)
k)2

Batch gradient descent:

wki ← wki − η
∂E

∂wki

Incremental (online) gradient descent:
Update weights for each x(n)

wki ← wki − η
∂E (n)

∂wki

Stochastic gradient descent:
Update weights for randomly chosen x.

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 10

Experimental comparison

Task: spoken vowel classification

Classifiers:

Gaussian classifier

Single layer network (SLN)

Multi-layer perceptron (MLP)

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 11

Classifying spoken vowels (lecture 09) — Training data

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

3500

Peterson−Barney F1−F2 Vowel Training Data

F1 / Hz

F
2

 /
 H

z

IY

IH

EH

AE

AH

AA

AO

UH

UW

ER

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 12

Gaussian for each class

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

3500

Peterson−Barney F1−F2 Vowel Training Data

F1 / Hz

F
2

 /
 H

z

IY

IH

EH

AE

AH

AA

AO

UH

UW

ER

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 13

Details of the classifiers

Gaussian classifier: (2-dimensional) Gaussian for each
class. Training involves estimating mean vector and
covariance matrix for each class, assume equal priors. (50
parameters)

Single layer network: 2 inputs, 10 outputs. Iterative
training of weight matrix. (30 parameters)

MLP: two inputs, 25 hidden units, 10 outputs. Trained
by gradient descent (backprop). (335 parameters)

For SLN and MLP normalise feature vectors to mean=0
and sd=1:

zni =
xni −mi

si
mi is sample mean of feature i computed from the
training set, si is standard deviation.

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 14

Results

Gaussian classifier: 86.5% correct
Single layer network: 85.5% correct
MLP: 86.5% correct

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 15

Decision Regions: Gaussian classifier

0 200 400 600 800 1000 1200
500

1000

1500

2000

2500

3000

3500

F1 / Hz

F
2

 /
 H

z

Peterson−Barney F1−F2 Gaussian Decision Regions

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 16

Decision Regions: Single-layer perceptron

100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000
PetersonBarney F1F2 SLN Decision Regions

F1/Hz

F
2

 /
 H

z

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 17

Decision Regions: Multi-layer perceptron

100 200 300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

F1 / Hz

F
2

 /
 H

z

Peterson�Barney F1F2 MLP Decision Regions

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 18

Obstacles to multi-layer neural networks

Still difficult to train

Computationally very expensive (e.g. weeks of training)
Slow convergence (’vanishing gradients’)
Difficult to find the optimal network topology

Poor generalisation (under some conditions)

Very good performance on the training set
Poor performance on the test set

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 19

Overfitting and generalisation

Example of curve fitting by a polynomial function:

y(x ,w) = w0 + w1 x + w2 x
2 + . . . + wM xM =

M∑

k=0

wk x
k

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

(after Fig 1.4 in PRML C. M. Bishop (2006))

cf. memorising the training data

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 20

Overfitting and generalisation

Data set

re
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y

parameters# parameters# training samples

parameters

re
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y

reliability

model complexity

(generalization)

accuracy

Training set

Test−set

Training−set

Test−set

validation

training
test

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 21

Generalisation in neural networks

How many hidden units (or, how many weights) do we need?

Optimising training set performance does not necessarily
optimise test set performance

Network too flexible: Too many weights compared with
number of training examples
Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping

Generalisation Error: The predicted error on unseen data.
How can the generalisation error be estimated?

Training error?

Etrain =
1

2

∑

trainingset

K∑

k=1

(yk − tk)2

Cross-validation error?

Exval =
1

2

∑

validationset

K∑

k=1

(yk − tk)2

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 22

Cross-validation

Optimise network performance given a fixed training set

Hold out a set of data (validation set) and predict
generalisation performance on this set

1 Train network in usual way on training data
2 Estimate performance of network on validation set

If several networks trained on the same data, choose the
one that performs best on the validation set (not the
training set)

k-fold Cross-validation: divide the data into k partitions;
select each partition in turn to be the validation set, and
train on the remaining (k − 1) partitions. Estimate
generalisation error by averaging over all validation sets.

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 23

Overtraining in neural networks

Overtraining (overfitting) corresponds to a network
function too closely fit to the training set (too much
flexibility)

Undertraining corresponds to a network function not well
fit to the training set (too little flexibility)

Solutions

If possible increasing both network complexity in line
with the training set size
Use prior information to constrain the network function
Control the flexibility: Structural Stabilisation
Control the effective flexibility: early stopping and
regularisation

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 24

Early stopping (†)

Use validation set to decide when to stop training

Training Set Error monotonically decreases as training
progresses

Validation Set Error will reach a minimum then start to
increase

Effective Flexibility increases as training progresses

Network has an increasing number of effective degrees of
freedom as training progresses

Network weights become more tuned to training data

Very effective used in many practical applications such as
speech recognition and optical character recognition

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 25

Early stopping

Validation

Training

E

tt*

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 26

Regularisation — Penalising complexity (†)

Original error function

E (w) =
1

2

N∑

n=1

||y(n) − t(n)||2

Regularised error function

Ẽ (w) =
1

2

N∑

n=1

||y(n) − t(n)||2 +
β

2

∑

`

||w||2

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 27

Obstacles to multi-layer neural networks

Still difficult to train

Computationally very expensive (e.g. weeks of training)
Slow convergence (’vanishing gradients’)
Difficult to find the optimal network topology

Poor generalisation (under some conditions)

Very good performance on the training set
Poor performance on the test set

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 28

Breakthrough (†)

1957 Frank Rosenblatt : ’Perceptron’
1986 D. Rumelhart, G. Hinton, and R. Williams: ’Backpropagation’

2006 G. Hinton etal (U. Toronto)
“Reducing the dimensionality of data with neural networks”, Science.

2009 J. Schmidhuber (Swiss AI Lab IDSIA)
Winner at ICDAR2009 handwriting recognition competition

2011- many papers from U.Toronto, Microsoft, IBM, Google, ...

What’s the ideas?
Pretraining

A single layer of feature detectors → Stack it to form
several hidden layers

Fine-tuning
GPU
Convolutional network

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 29

Breakthrough (†)

18

20

22

24

26

28

30

1990 1995 2000 2005 2010 2015

P
h
o
n
e
 e

rr
o
r

ra
te

 [
%

]

Year

Speaker-independent phonetic recognition on TIMIT

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 30

Summary

Error back propagation training

Logistic sigmoid vs linear node

Decision boundaries

Overfitting vs generalisation

(Feed-forward network vs RNN)

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2) 31

