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Today's Schedule

Training of neural networks (recap)

@ Training of neural networks (recap)

© Activation functions

e Experimental comparison of different classifiers
o Overfitting and generalisation

© Deep Neural Networks
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@ Optimisation problem (training):

1N
in E(w) = min & () _ ¢ |2
min E(w) = min 33y I

@ No analytic solution (no closed form)

o Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton's
method, Conjugate gradient methods

o Gradient descent

w e w, — naimE(w), (n>0)
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Training of the single-layer neural network (recap)

Multi-layer neural networks (recap)

The derivatives of the error function (two-layers) (recap)
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Multi-layer perceptron (MLP)

o Hidden-to-output weights:
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@ Input-to-hidden weights:
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Error back propagation (recap)

Some questions on activation functions

Logistic sigmoid vs a linear output node
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@ Is the logistic sigmoid function necessary for single-layer

single-output-node network?

o No, in terms of classification.
We can replace it with g(a) = a. However, decision
boundaries can be different. (NB: A linear decision
boundary (a = 0.5) is formed in either case.)

o What benefits are there in using the logistic sigmoid
function in the case above?

e The output can be regarded as a posterior probability.
o Compared with a linear output node (g(a) = a), 'logistic

regression’ normally forms a more robust decision
boundary against noise.
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Binary classification problem with the least squares error (LSE):

ga)=———— v ga)=a

(after Fig 4.4b in PRML C. M. Bishop (2006))
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Different implementations of gradient descent

Experimental comparison

Classifying spoken vowels (lecture 09) — Training data
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@ Batch gradient descent:

@ Task: spoken vowel classification

o Classifiers:

Peterson-Barney F1-F2 Vowel Training Data

o Gaussian classifier ¥
Wii <= Wi — 15— . g g
' ' n@wk,- o Single layer network (SLN)
@ Incremental (online) gradient descent: o Multi-layer perceptron (MLP) a0 "
Update weights for each x(" %
OE™ ol
Wii < Wk — 7)87
Wi
@ Stochastic gradient descent: s o o
Update weights for randomly chosen x.
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Gaussian for each class Details of the classifiers Results

Peterson-Barney F1-F2 Vowel Training Data
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Gaussian classifier: (2-dimensional) Gaussian for each
class. Training involves estimating mean vector and
covariance matrix for each class, assume equal priors. (50
parameters)

Single layer network: 2 inputs, 10 outputs. Iterative
training of weight matrix. (30 parameters)

o MLP: two inputs, 25 hidden units, 10 outputs. Trained
by gradient descent (backprop). (335 parameters)

@ For SLN and MLP normalise feature vectors to mean=0
and sd=1:
X mi

Si
m; is sample mean of feature i computed from the
training set, s; is standard deviation.
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86.5% correct
85.5% correct
86.5% correct

Gaussian classifier:
Single layer network:
MLP:
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Decision Regions: Gaussian classifier

Decision Regions: Single-layer perceptron

Decision Regions: Multi-layer perceptron

Peterson-Barney F1-F2 Gaussian Decision Regions
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PetersonBarney F1F2 SLN Decision Regions
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Peterson Barney F1F2 MLP Decision Regions
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Obstacles to multi-layer neural networks

Overfitting and generalisation

Overfitting and generalisation

o Still difficult to train

o Computationally very expensive (e.g. weeks of training)
e Slow convergence ('vanishing gradients')
o Difficult to find the optimal network topology

@ Poor generalisation (under some conditions)

o Very good performance on the training set
o Poor performance on the test set
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Example of curve fitting by a polynomial function:
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(after Fig 1.4 in PRML C. M. Bishop (2006))

@ cf. memorising the training data
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Generalisation in neural networks

Cross-validation

Overtraining in neural networks

@ How many hidden units (or, how many weights) do we need?
o Optimising training set performance does not necessarily
optimise test set performance
o Network too flexible: Too many weights compared with
number of training examples
o Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping
o Generalisation Error: The predicted error on unseen data.
How can the generalisation error be estimated?
o Training error?

K
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2
Eirain = > Z Z(yk — tx)
trainingset k=1
o Cross-validation error?

K
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Eval = 5

@ Optimise network performance given a fixed training set
@ Hold out a set of data (validation set) and predict
generalisation performance on this set

@ Train network in usual way on training data

@ Estimate performance of network on validation set
If several networks trained on the same data, choose the
one that performs best on the validation set (not the
training set)

k-fold Cross-validation: divide the data into k partitions;
select each partition in turn to be the validation set, and
train on the remaining (k — 1) partitions. Estimate

generalisation error by averaging over all validation sets.

@ Overtraining (overfitting) corresponds to a network
function too closely fit to the training set (too much
flexibility)

@ Undertraining corresponds to a network function not well
fit to the training set (too little flexibility)

@ Solutions

o If possible increasing both network complexity in line
with the training set size

e Use prior information to constrain the network function
Control the flexibility: Structural Stabilisation

o Control the effective flexibility: early stopping and
regularisation
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Early stopping () Early stopping Regularisation — Penalising complexity (f)
@ Use validation set to decide when to stop training £
@ Training Set Error monotonically decreases as training - .
@ Original error function
progresses "
L$m) 1y _ g2
o . - E(w) == —t

o Validation Set Error will reach a minimum then start to (w) 2;”)’ I

increase
o . T . o . .

Effective FIeX|b||!ty |ncr‘eases as training progresses validation @ Regularised error function
o Network has an increasing number of effective degrees of = L&) 2 B 2

ot " E(w) = >3y — O + 23w

reedom as training progresses 24y 24
@ Network weights become more tuned to training data
@ Very effective used in many practical applications such as Training

speech recognition and optical character recognition |

T
t* t
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Obstacles to multi-layer neural networks

Breakthrough ()

Breakthrough ()

o Still difficult to train

o Computationally very expensive (e.g. weeks of training)
e Slow convergence ('vanishing gradients')
o Difficult to find the optimal network topology

@ Poor generalisation (under some conditions)

o Very good performance on the training set
o Poor performance on the test set
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1957  Frank Rosenblatt : 'Perceptron’
1986  D. Rumelhart, G. Hinton, and R. Williams: 'Backpropagation’
2006  G. Hinton etal (U. Toronto)

“Reducing the dimensionality of data with neural networks”, Science.
2009  J. Schmidhuber (Swiss Al Lab IDSIA)

Winner at ICDAR2009 handwriting recognition competition
2011- many papers from U.Toronto, Microsoft, IBM, Google, ...

@ What's the ideas?
e Pretraining

o A single layer of feature detectors — Stack it to form
several hidden layers

o Fine-tuning
e GPU
e Convolutional network
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Speaker-independent phonetic recognition on TIMIT
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Summary

Error back propagation training
Logistic sigmoid vs linear node
Decision boundaries

Overfitting vs generalisation
(Feed-forward network vs RNN)
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