Inf2b Learning and Data

Lecture 15: Multi-layer neural networks (2)

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics

University of Edinburgh

Jan-Mar 2014

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)



Today's Schedule

@ Training of neural networks (recap)

© Activation functions

© Experimental comparison of different classifiers
@ Overfitting and generalisation

© Deep Neural Networks
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Training of neural networks (recap)

@ Optimisation problem (training)'
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w

@ No analytic solution (no closed form)

e Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton's
method, Conjugate gradient methods

@ Gradient descent
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Training of the single-layer neural network (recap)
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Multi-layer neural networks (recap)

Multi-layer perceptron (MLP)

e Hidden-to-output weights:
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The derivatives of the error function (two-layers) (recap)
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Error back propagation (recap)
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Some questions on activation functions

@ Is the logistic sigmoid function necessary for single-layer
single-output-node network?

o No, in terms of classification.
We can replace it with g(a) = a. However, decision
boundaries can be different. (NB: A linear decision
boundary (a = 0.5) is formed in either case.)

@ What benefits are there in using the logistic sigmoid
function in the case above?

e The output can be regarded as a posterior probability.

e Compared with a linear output node (g(a) = a), 'logistic
regression’ normally forms a more robust decision
boundary against noise.

Inf2b Learning and Data: Lecture 15 Multi-layer neural networks (2)



Logistic sigmoid vs a linear output node

Binary classification problem with the least squares error (LSE):

vs g(a)=a

(after Fig 4.4b in PRML C. M. Bishop (2006))
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Different implementations of gradient descent
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@ Batch gradient descent:
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@ Incremental (online) gradient descent:
Update weights for each x("
OE()
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@ Stochastic gradient descent:
Update weights for randomly chosen x

Wi < Wy —
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Experimental comparison

@ Task: spoken vowel classification

o Classifiers:
e Gaussian classifier

e Single layer network (SLN)
o Multi-layer perceptron (MLP)
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Classifying spoken vowels (lecture 09) — Training data

Peterson-Barney F1-F2 Vowel Training Data
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Gaussian for each class
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Details of the classifiers

e Gaussian classifier: (2-dimensional) Gaussian for each
class. Training involves estimating mean vector and
covariance matrix for each class, assume equal priors. (50
parameters)

e Single layer network: 2 inputs, 10 outputs. lterative
training of weight matrix. (30 parameters)

@ MLP: two inputs, 25 hidden units, 10 outputs. Trained
by gradient descent (backprop). (335 parameters)

@ For SLN and MLP normalise feature vectors to mean=0
and sd=1:

n .

z =

S
m; is sample mean of feature i computed from the
training set, s; is standard deviation.
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Results

Gaussian classifier:
Single layer network:
MLP:

86.5% correct
85.5% correct
86.5% correct
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Decision Regions: Gaussian classifier

—F2 Gaussian Decision Regions
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Decision

Regions: Single-layer perceptron
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Decision

Regions: Multi-layer perceptron
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Obstacles to multi-layer neural networks

o Still difficult to train

o Computationally very expensive (e.g. weeks of training)
e Slow convergence ('vanishing gradients’)
e Difficult to find the optimal network topology

@ Poor generalisation (under some conditions)

e Very good performance on the training set
e Poor performance on the test set
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Overfitting and generalisation

Example of curve fitting by a polynomial function:

M
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k=0
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(after Fig 1.4 in PRML C. M. Bishop (2006))

@ cf. memorising the training data
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Overfitting and generalisation

recognition accuracy

Data set

training

test
validation

# parameters
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Generalisation in neural networks

@ How many hidden units (or, how many weights) do we need?
@ Optimising training set performance does not necessarily
optimise test set performance

e Network too flexible: Too many weights compared with
number of training examples
o Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping
@ Generalisation Error: The predicted error on unseen data.
How can the generalisation error be estimated?
e Training error?

1 K
2
Etrain — E Z Z(yk - tk)
trainingset k=1
o Cross-validation error?

K
Exval = % Z Z(yk - tk)2

validationset k=1
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Cross-validation

Optimise network performance given a fixed training set
Hold out a set of data (validation set) and predict
generalisation performance on this set

@ Train network in usual way on training data

@ Estimate performance of network on validation set
If several networks trained on the same data, choose the
one that performs best on the validation set (not the
training set)
k-fold Cross-validation: divide the data into k partitions;
select each partition in turn to be the validation set, and
train on the remaining (k — 1) partitions. Estimate
generalisation error by averaging over all validation sets.
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Overtraining in neural networks

@ Overtraining (overfitting) corresponds to a network
function too closely fit to the training set (too much
flexibility)

@ Undertraining corresponds to a network function not well
fit to the training set (too little flexibility)
@ Solutions
o If possible increasing both network complexity in line
with the training set size
e Use prior information to constrain the network function
Control the flexibility: Structural Stabilisation
o Control the effective flexibility: early stopping and
regularisation
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Early stopping ()

@ Use validation set to decide when to stop training

@ Training Set Error monotonically decreases as training
progresses

@ Validation Set Error will reach a minimum then start to
increase

o Effective Flexibility increases as training progresses

@ Network has an increasing number of effective degrees of
freedom as training progresses

@ Network weights become more tuned to training data

@ Very effective used in many practical applications such as
speech recognition and optical character recognition
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Early stopping

Validation

Training
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Regularisation — Penalising complexity (1)

@ Original error function

1 N n n
E(w) = 53 Iy — )2
n=1

@ Regularised error function
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Obstacles to multi-layer neural networks

o Still difficult to train

o Computationally very expensive (e.g. weeks of training)
e Slow convergence ('vanishing gradients’)
e Difficult to find the optimal network topology

@ Poor generalisation (under some conditions)

e Very good performance on the training set
e Poor performance on the test set
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Breakthrough (1)

1957  Frank Rosenblatt : 'Perceptron’
1986  D. Rumelhart, G. Hinton, and R. Williams: 'Backpropagation’
2006  G. Hinton etal (U. Toronto)

“Reducing the dimensionality of data with neural networks”, Science.
2009  J. Schmidhuber (Swiss Al Lab IDSIA)

Winner at ICDAR2009 handwriting recognition competition
2011- many papers from U.Toronto, Microsoft, IBM, Google, ...

@ What's the ideas?
e Pretraining

o A single layer of feature detectors — Stack it to form
several hidden layers

e Fine-tuning
o GPU
o Convolutional network
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Breakthrough (1)

Speaker-independent phonetic recognition on TIMIT
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Summary

Error back propagation training
Logistic sigmoid vs linear node
Decision boundaries
Overfitting vs generalisation
(Feed-forward network vs RNN)
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