Inf2b Learning and Data

Lecture 14: Multi-layer neural networks (1)

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

Jan-Mar 2014

Today's Schedule

- Single-layer network with a single output node (recap)
- Single-layer network with multiple output nodes
- Multi-layer neural network
- Activation functions

Single-layer network with a single output node (recap)

• Activation function:

$$y = g(a) = g(\sum_{i=0}^{d} w_i x_i)$$
 $g(a) = \frac{1}{1 + \exp(-a)}$

- Training set : $D = \{(\mathbf{x}^{(n)}, t^{(n)})\}_{n=1}^N$ where $t^{(i)} \in \{0, 1\}$
- Error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (y^{(n)} - t^{(n)})^2$$

• Optimisation problem (training) min $E(\mathbf{w})$

Training of single layer neural network

- Optimisation problem: $\min_{\mathbf{w}} E(\mathbf{w})$
- No analytic solution (no closed form)
- Employ an iterative method (requires initial values)
 e.g. Gradient descent (steepest descent), Newton's method, Conjugate gradient methods
- Gradient descent

Training of the single-layer neural network

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y^{(n)} - t^{(n)} \right)^2 = \frac{1}{2} \sum_{n=1}^{N} \left(g(a^{(n)}) - t^{(n)} \right)^2$$

$$\text{where} \quad a^{(n)} = \sum_{i=0}^{d} w_i x_i^{(n)}. \qquad \frac{\partial a^{(n)}}{\partial w_i} = x_i^{(n)}$$

$$\frac{\partial E(\mathbf{w})}{\partial w_i} = \frac{\partial E(\mathbf{w})}{\partial y^{(n)}} \frac{\partial y^{(n)}}{\partial a^{(n)}} \frac{\partial a^{(n)}}{\partial w_i}$$

$$= \sum_{n=1}^{N} \left(y^{(n)} - t^{(n)} \right) \frac{\partial g(a^{(n)})}{\partial a^{(n)}} \frac{\partial a^{(n)}}{\partial w_i}$$

$$= \sum_{n=1}^{N} \left(y^{(n)} - t^{(n)} \right) g'(a^{(n)}) x_i^{(n)}$$

Single-layer network with multiple output nodes

• K output nodes: y_1, \ldots, y_K .

$$y_k^{(n)} = g\left(\sum_{i=0}^d w_{ki} x_i^{(n)}\right) = g(a_k^{(n)})$$

 $a_k^{(n)} = \sum_{i=0}^d w_{ki} x_i^{(n)}$

Single-layer network with multiple output nodes

• Training set :
$$D = \{(\mathbf{x}^{(1)}, \mathbf{t}^{(1)}), \dots, (\mathbf{x}^{(N)}, \mathbf{t}^{(N)})\}$$

where $\mathbf{t}^{(n)} = (t_1^{(n)}, \dots, t_K^{(n)})$ and $t_k^{(n)} \in \{0, 1\}$

• Error function:

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{t}^{(n)}||^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$
$$= \sum_{n=1}^{N} E^{(n)}, \text{ where } E^{(n)} = \frac{1}{2} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$

• Training by the gradient descent:

$$w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}}, \qquad (\eta > 0)$$

The derivatives of the error function (single-layer)

$$E^{(n)} = \frac{1}{2} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$

$$y_k^{(n)} = g(a_k^{(n)})$$

$$a_k^{(n)} = \sum_{j=1}^{M} w_{kj} x_j^{(n)}$$

$$\frac{\partial E^{(n)}}{\partial w_{ki}} = \frac{\partial E^{(n)}}{\partial y_k^{(n)}} \frac{\partial y_k^{(n)}}{\partial a_k^{(n)}} \frac{\partial a_k^{(n)}}{\partial w_{ki}}$$

$$= (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) x_i^{(n)}$$

Multi-layer neural networks

Multi-layer perceptron (MLP)

• Hidden-to-output weights:

$$w_{kj}^{[2]} \leftarrow w_{kj}^{[2]} - \eta \frac{\partial E}{\partial w_{kj}^{[2]}}$$

• Input-to-hidden weights:

$$w_{ji}^{[1]} \leftarrow w_{ji}^{[1]} - \eta \frac{\partial E}{\partial w_{ii}^{[1]}}$$

Training of MLP

- 1940s Warren McCulloch and Walter Pitts: 'threshold logic' Donald Hebb: 'Hebbian learning'
- 1957 Frank Rosenblatt: 'Perceptron'
- 1969 Marvin Minsky and Seymour Papert : limitations of neural networks
- 1980 Kunihiro Fukushima: 'Neocognitoron'
- 1986 D. Rumelhart, G. Hinton, and R. Williams, "Learning representations by back-propagating errors" (1974, Paul Werbos)

The derivatives of the error function (two-layers)

$$E^{(n)} = \frac{1}{2} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$

$$y_k^{(n)} = g(a_k^{(n)}), \quad a_k^{(n)} = \sum_{j=1}^{M} w_{kj}^{[2]} z_j^{(n)}$$

$$z_j^{(n)} = h(b_j^{(n)}), \quad b_j^{(n)} = \sum_{i=0}^{M} w_{ji}^{[1]} x_i^{(n)}$$

$$\frac{\partial E^{(n)}}{\partial w_{kj}^{[2]}} = \frac{\partial E^{(n)}}{\partial y_k^{(n)}} \frac{\partial y_k^{(n)}}{\partial a_k^{(n)}} \frac{\partial a_k^{(n)}}{\partial w_{kj}^{(2)}}$$

$$= (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) z_j^{(n)}$$

$$\frac{\partial E^{(n)}}{\partial w_{ji}^{[1]}} = \frac{\partial E^{(n)}}{\partial z_j^{(n)}} \frac{\partial z_j^{(n)}}{\partial b_j^{(n)}} \frac{\partial b_j^{(n)}}{\partial w_{ji}^{(n)}} = \left(\sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)}) \frac{\partial y_k^{(n)}}{\partial z_j^{(n)}} \right) h'(b_j^{(n)}) x_i^{(n)}$$

$$= \left(\sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)}) g'(a_k^{(n)}) w_{kj}^{(2)} \right) h'(b_j^{(n)}) x_i^{(n)}$$

Error back propagation

$$\frac{\partial E^{(n)}}{\partial w_{kj}^{[2]}} = \frac{\partial E^{(n)}}{\partial y_{k}^{(n)}} \frac{\partial y_{k}^{(n)}}{\partial a_{k}^{(n)}} \frac{\partial a_{k}^{(n)}}{\partial w_{kj}^{[2]}} \\
= (y_{k}^{(n)} - t_{k}^{(n)}) g'(a_{k}^{(n)}) z_{j}^{(n)} \\
= \delta_{k}^{[2](n)} z_{j}^{(n)}, \quad \delta_{k}^{[2](n)} = \frac{\partial E^{(n)}}{\partial a_{k}^{(n)}} \\
\frac{\partial E^{(n)}}{\partial w_{ji}^{[1]}} = \frac{\partial E^{(n)}}{\partial z_{j}^{(n)}} \frac{\partial z_{j}^{(n)}}{\partial b_{j}^{(n)}} \frac{\partial b_{j}^{(n)}}{\partial w_{ji}^{[1]}} \\
= \left(\sum_{k=1}^{K} (y_{k}^{(n)} - t_{k}^{(n)}) g'(a_{k}^{(n)}) w_{kj}^{[2]}\right) h'(b_{j}^{(n)}) x_{i}^{(n)} \\
= \left(\sum_{k=1}^{K} \delta_{k}^{[2](n)} w_{kj}^{[2]}\right) h'(b_{j}^{(n)}) x_{i}^{(n)}$$

Notes on Activation functions

- Interpretation of output values
- Normalisation of the output values
- Other activation functions

Output of logistic sigmoid activation function

• Consider a single-layer network with a single output node logistic sigmoid activation function:

$$y = g(a) = \frac{1}{1 + \exp(-a)} = g\left(\sum_{i=0}^{d} w_i x_i\right)$$

$$= \frac{1}{1 + \exp\left(-\sum_{i=0}^{d} w_i x_i\right)}$$

• Consider a two class problem, with classes c_1 and c_2 . The posterior probability of c_1 :

$$\begin{split} P(c_1|\mathbf{x}) &= \frac{p(\mathbf{x}|c_1) \, P(c_1)}{p(\mathbf{x})} \, = \, \frac{p(\mathbf{x}|c_1) \, P(c_1)}{p(\mathbf{x}|c_1) \, P(c_1) + p(\mathbf{x}|c_2) \, P(c_2)} \\ &= \frac{1}{1 + \frac{p(\mathbf{x}|c_2) \, P(c_2)}{p(\mathbf{x}|c_1) \, P(c_1)}} \, = \, \frac{1}{1 + \exp\left(-\ln\frac{p(\mathbf{x}|c_1) \, P(c_1)}{p(\mathbf{x}|c_2) \, P(c_2)}\right)} \end{split}$$

Approximation of posterior probabilities

Logistic sigmoid function $g(a) = \frac{1}{1 + \exp(-a)}$

Posterior probabilities of two classes with Gaussian distributions:

Normalisation of output nodes

Original outputs:

$$y_k = g(a_k), \quad a_k = \sum_{i=0}^d w_{ki} x_i$$

 $(\sum_{k=1}^K y_k) \neq 1$

• Softmax activation function for g():

$$y_k = \frac{\exp(a_k)}{\sum_{\ell=1}^K \exp(a_\ell)}$$

(i)
$$0 \le y_k \le 1$$

(ii)
$$\sum_{k=1}^{K} y_k = 1$$

(iii)
$$y_k \approx P(c_k|\mathbf{x}) = \frac{p(\mathbf{x}|c_k)P(c_k)}{\sum_{\ell=1}^K p(\mathbf{x}|c_k)P(c_k)}$$

Some questions on activation functions

- Is the logistic sigmoid function necessary for single-layer single-output-node network?
 - No, in terms of classification. (we can replace it with g(a) = a)
- What benefits are there in using the logistic sigmoid function?

Online gradient descent

$$E(w) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{y}^{(n)} - \mathbf{t}^{(n)}||^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$
$$= \sum_{n=1}^{N} E^{(n)}, \quad \text{where } E^{(n)} = \frac{1}{2} \sum_{k=1}^{K} (y_k^{(n)} - t_k^{(n)})^2$$

Batch gradient descent:

$$w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}}$$

• Incremental (online) gradient descent: Update weights for each $\mathbf{x}^{(n)}$

$$w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E^{(n)}}{\partial w_{ki}}$$

Stochastic gradient descent:
 Update weights for randomly chosen x.

Summary

- Training of single-layer network
- Training of multi-layer network with 'error back propagation'
- Activation functions (e.g. softmax)