Inf2b Learning and Data

Lecture 11: Review: Gaussians and Linear discriminants

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Today's Schedule

- Gaussian distributions
- Maximum likelihood estimation
- Covariance matrices

Warning: a lot of maths!

Symbol (†): extra topics

Gaussian distributions and discriminant functions

Univariate Gaussian pdf:

$$p(x | \mu, \sigma^2) = N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$$

• Discriminant function for a univariate Gaussian pdf:

$$y_c(x) = \ln p(\mu_c, \sigma_c^2 | x) = -\frac{1}{2} \frac{(x - \mu_c)^2}{\sigma_c^2} - \frac{1}{2} \ln \sigma_c^2 + \ln P(c)$$

Multivariate Gaussian pdf:

$$\rho(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Discriminant function for a multivariate Gaussian pdf:

$$y_c(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1}(\mathbf{x} - \boldsymbol{\mu}_c) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_c| + \ln P(c)$$
$$= -\frac{1}{2} \mathbf{x}^T \boldsymbol{\Sigma}_c^{-1} \mathbf{x} + \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}_c^{-1} \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}_c^{-1} \boldsymbol{\mu}_c - \frac{1}{2} \ln |\boldsymbol{\Sigma}_c| + \ln P(c)$$

Parameter estimation of Gaussian distributions

- Given an observation (training) set of N samples: $D = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}\$, where $\mathbf{x}^{(n)} \in \mathcal{R}^d$, which came from a large population.
- ullet How can we estimate the mean vector μ and the covariance matrix Σ of the population?
- Maximum Likelihood (ML) estimation $\max_{\Sigma} p(D|\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Maximum Posterior Probability (MAP) estimation (†) $\max_{\mu, \Sigma} p(\mu, \Sigma \mid D) = \max_{\mu, \Sigma} p(D \mid \mu, \Sigma) p(\mu, \Sigma)$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discrimina

ML estimation of a univariate Gaussian pdf

Samples $D = \{x^{(n)}\}_{n=1}^{N}$ were drawn independently (i.i.d)

Likelihood:

$$p(D | \mu, \sigma^{2}) = p(x^{(n)}, \dots, x^{(N)} | \mu, \sigma^{2})$$

$$= p(x^{(1)} | \mu, \sigma^{2}) \cdots p(x^{(N)} | \mu, \sigma^{2}) = \prod_{n=1}^{N} p(x^{(n)} | \mu, \sigma^{2})$$

$$\stackrel{\triangle}{=} L(\mu, \sigma^{2} | D)$$

Optimisation problem:

Find the parameters μ and σ^2 that maximise the likelihood:

ML estimation of a univariate Gaussian pdf

 $LL(\mu, \sigma^2 \mid D) = -\frac{N}{2} \log(2\pi) - \frac{N}{2} \log(\sigma^2) - \sum_{n=0}^{N} \frac{(x^{(n)} - \mu)^2}{2\sigma^2}$

$$\max_{\mu,\sigma^2} L(\mu, \sigma^2 \mid D)$$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminants

ML estimation of a univariate Gaussian pdf

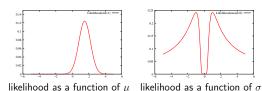
$$LL(\mu, \sigma^{2} | D) = \log L(\mu, \sigma^{2} | D) = \log \prod_{n=1}^{N} p(x^{(n)} | \mu, \sigma^{2})$$

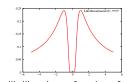
$$= \sum_{n=1}^{N} \log p(x^{(n)} | \mu, \sigma^{2})$$

$$= \sum_{n=1}^{N} \log \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= -\frac{N}{2} \log(2\pi) - \frac{N}{2} \log(\sigma^{2}) - \sum_{n=1}^{N} \frac{(x^{(n)} - \mu)^{2}}{2\sigma^{2}}$$

Examples of likelihood function





$$L(\mu, \sigma^2; x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$\frac{\partial LL(\mu, \sigma^2 \mid D)}{\partial \mu} = 2 \sum_{n=1}^{N} \frac{x^{(n)} - \mu}{2\sigma^2} = 0$ $\Rightarrow \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$ $\frac{\partial LL(\hat{\mu}, \sigma^2 \mid D)}{\partial \sigma^2} = -\frac{N}{2} \frac{1}{\sigma^2} + \sum_{i=1}^{N} \frac{(x^{(n)} - \hat{\mu})^2}{2(\sigma^2)^2} = 0$ $\Rightarrow \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(n)} - \hat{\mu})^2$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminants

Point estimation vs interval estimation (†)

Estimating $p(\mathbf{x} \mid C)$ from training data set D, i.e. $p(\mathbf{x} \mid D)$

• based on point estimation (e.g. ML, MAP)
$$p(\mathbf{x} \mid D) = p(\mathbf{x} \mid \Lambda^*), \quad \Lambda^* = (\mu^*, \sigma^{2*})$$

• based on interval estimation (Bayesian estimation)

$$p(\mathbf{x} \mid D) = \int p(\mathbf{x} \mid \Lambda, D) p(\Lambda \mid D) d\Lambda$$
$$= \int p(\mathbf{x} \mid \Lambda) p(\Lambda \mid D) d\Lambda$$

where
$$p(\Lambda \mid D) = \frac{p(D \mid \Lambda)p(\Lambda)}{\int p(D \mid \Lambda)p(\Lambda)d\Lambda}$$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminant

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminants

Covariance matrix

Properties of covariance matrix (†)

Properties of covariance matrix (†)

Sample covariance matrix:

$$\Sigma = \begin{pmatrix} \sigma_{11} & \cdots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \cdots & \sigma_{dd} \end{pmatrix} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$

- ullet Symmetric : $\Sigma^T = \Sigma$, and $(\Sigma^{-1})^T = \Sigma^{-1}$
- Positive definite: $\mathbf{x}^T \Sigma \mathbf{x} > 0$, and $\mathbf{x}^T \Sigma^{-1} \mathbf{x} > 0$

			-
\sim	1/	Γ	1/
$\Delta -$	v	IJ	v

$$= \begin{pmatrix} v_{11} & \cdots & v_{1d} \\ \vdots & \ddots & \vdots \\ v_{d1} & \cdots & v_{dd} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_d \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1d} \\ \vdots & \ddots & \vdots \\ v_{d1} & \cdots & v_{dd} \end{pmatrix}^T$$
$$= (\mathbf{v}_1, \dots, \mathbf{v}_d) \operatorname{Diag}(\lambda_1, \dots, \lambda_d) (\mathbf{v}_1, \dots, \mathbf{v}_d)^T$$

- \mathbf{v}_i : eigen vector, λ_i : eigen value
- $\sum \mathbf{v}_i = \lambda_i \mathbf{v}_i$ • $\lambda_i > 0$, $||\mathbf{v}_i|| = 1$
- $|\Sigma| = \prod_{i=1}^d \lambda_i$
- $\sum_{i=1}^d \sigma_{ii} = \sum_{i=1}^d \lambda_i$

- rank(Σ)
 - the number of linearly independent columns (or rows)
 - the number of bases (i.e. the dimension of the column

$$\operatorname{rank}(\boldsymbol{\Sigma}) \,=\, d \quad \rightarrow \quad \forall_i \;:\; \lambda_i > 0$$

$$\forall_{i\neq j} : \mathbf{v}_i \perp \mathbf{v}_j$$

$$|\mathbf{\Sigma}|>0$$

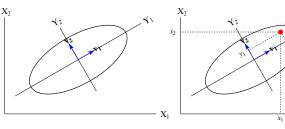
$$\operatorname{rank}(\Sigma) < d \rightarrow \exists_i : \lambda_i = 0$$

$$\exists_{(i,j)} : \mathbf{v}_i \parallel \mathbf{v}_j$$

$$|\mathbf{\Sigma}| = 0$$

Geometry of covariance matrix (†)

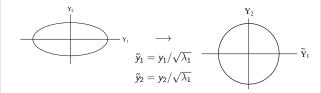
Geometry of covariance matrix (†)



Sort eigen values: $\lambda_1 > \lambda_2 > \ldots > \lambda_d$

 \mathbf{v}_1 : eigen vector of λ_1 \mathbf{v}_2 : eigen vector of λ_2

 $y_1 = \mathbf{v}_1^T \mathbf{x}$, $Var(y_1) = \lambda_1$ $\mathbf{v}_2 = \mathbf{v}_2^T \mathbf{x}$. $\operatorname{Var}(\mathbf{v}_2) = \lambda_2$



$$\begin{split} (\mathbf{x} - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \ = \ (\tilde{\mathbf{y}} - \tilde{\mathbf{u}})^\mathsf{T} (\tilde{\mathbf{y}} - \tilde{\mathbf{u}}) \ = \ ||\tilde{\mathbf{y}} - \tilde{\mathbf{u}}||^2 \\ \text{where } \tilde{\mathbf{u}} = (\frac{\mathbf{v}_1}{\sqrt{\lambda_1}}, \frac{\mathbf{v}_2}{\sqrt{\lambda_2}})^\mathsf{T} \boldsymbol{\mu} \end{split}$$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminants

Problems with the estimation of covariance matrix

- ullet $|\Sigma|
 ightarrow 0$ when
 - the amount of training data is small
 - the dimensionality of feature vector is high
- \bullet Σ^{-1} gets rather unstable even if it exists
- Solutions?
- Assume a diagonal covariance matrix rather than a 'full' covariance matrix.
- Reduce the dimensionality by transforming the data into a low-dimensional vector space (PCA).
- Another regularisation:
 - Add a small positive number to the diagonal elements

$$\Sigma \leftarrow \Sigma + \epsilon I$$

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discriminants

What if $|\Sigma_i|$ are the same for all classes? (†) Summary

- Maximum likelihood estimation (MLE)
- Properties of covariance matrix
- Practical problem with covariance matrix estimation