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@ Gaussian distributions
© Maximum likelihood estimation
© Covariance matrices

Warning: a lot of maths!

Symbol (: extra topics
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@ Univariate Gaussian pdf:
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@ Discriminant function for a univariate Gaussian pdf:
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@ Multivariate Gaussian pdf:
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@ Discriminant function for a multivariate Gaussian pdf:
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Parameter estimation of Gaussian distributions

ML estimation of a univariate Gaussian pdf

ML estimation of a univariate Gaussian pdf

@ Given an observation (training) set of N samples:
D = {x® x@ . x(M} where x(") € R9, which came
from a large population.

@ How can we estimate the mean vector p and the
covariance matrix X of the population?

@ Maximum Likelihood (ML) estimation
max p(D|s, %)
79>

o Maximum Posterior Probability (MAP) estimation ()

maxp(p, X | D) = maxp(D|p,X) p(p, )
75> [
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Assumption:
Samples D = {x(M}"_ were drawn independently (i.i.d)

Likelihood:
oD 111, 0%) = P, XM |1, 0?) )
= p(x )Iu o?) - p(x™ | p,0?) = [[ p(x | p, %)
2 L(,0?| D)

Optimisation problem:
Find the parameters 1 and o2 that maximise the
likelihood:

max L(u1, o?| D)
o
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LL(p,0*| D) = log L(p,0” | D) = |0ng " p,0?
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Examples of likelihood function

ML estimation of a univariate Gaussian pdf

Point estimation vs interval estimation ()
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Ilkel|hood as a functlon of

L(u, 0% x) =
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Estimating p(x | C) from training data set D, i.e. p(x| D)
@ based on point estimation (e.g. ML, MAP)
p(x|D) = p(x|A%) . A" = (", 0%)

@ based on interval estimation (Bayesian estimation)
plx| D) = [ plx| A D)p(AID)dA
~ [ ol Np(AIDYIA

p(D[A)p(A)

where p(A| D) = T p(D[N)p(A)dA
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Covariance matrix

Properties of covariance matrix ()

Properties of covariance matrix ()

_ T
E=VDV o rank(X)
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Sample covariance matrix: _ o the number of bases (i.e. the dimension of the column
0 A\ space)
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Geometry of covariance matrix ()

Geometry of covariance matrix ()

Problems with the estimation of covariance matrix

X5
40 S

Xy

Sort eigen values: A1 > X\ > ... > Ny

vy : eigen vector of A\;
v, :  eigen vector of A,

Var(y1) = A
Var(vﬂ =\
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e |X| — 0 when
o the amount of training data is small
o the dimensionality of feature vector is high

@ X! gets rather unstable even if it exists

@ Solutions?

@ Assume a diagonal covariance matrix rather than a 'full’
covariance matrix.

@ Reduce the dimensionality by transforming the data into a
low-dimensional vector space (PCA).

@ Another regularisation:
e Add a small positive number to the diagonal elements
Y — X +el

Inf2b Learning and Data: Lecture 11 Review: Gaussians and Linear discrimi 15

What if |X;| are the same for all classes? ()

Summary
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@ Maximum likelihood estimation (MLE)
@ Properties of covariance matrix

@ Practical problem with covariance matrix estimation
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