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Today's Schedule

@ Gaussian distributions
© Maximum likelihood estimation

© Covariance matrices

Warning: a lot of maths!

Symbol (): extra topics
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Gaussian distributions and discriminant functions

@ Univariate Gaussian pdf:
1 —(x—n)?
2y . 2y _
p(X|,u,0 )*N(Xv,U?U )* 202 eXp( 20_2

@ Discriminant function for a univariate Gaussian pdf:
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@ Multivariate Gaussian pdf:
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@ Discriminant function for a multivariate Gaussian pdf:
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Parameter estimation of Gaussian distributions

@ Given an observation (training) set of N samples:
D = {xM) x@ . x(M} where x(") € R?, which came
from a large population.

@ How can we estimate the mean vector p and the
covariance matrix X of the population?

@ Maximum Likelihood (ML) estimation
max p(D|p, X3)
w,x

@ Maximum Posterior Probability (MAP) estimation ()
max p(p, X | D) = maxp(D|p,X) p(p, %)
/‘va H,E
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ML estimation of a univariate Gaussian pdf

Assumption:
Samples D = {x(M}N_ were drawn independently (i.i.d)
Likelihood:
p(D‘M,U2):p( (n)?"wX(N)‘:uaUz) N
= p(xW | ,0%) - p(xV | p, %) = T [ P | 1, 0%)
£ (.07 | D)

Optimisation problem:
Find the parameters 1 and o2 that maximise the
likelihood:

max L(p, 0% | D)
02
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ML estimation of a univariate Gaussian pdf

LL(pt, 02| D) = log L(p, 0% | D) = log H p(x™ |, o

N
= log p(x" | 1, 0%)

n=1

N
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Examples of likelihood function
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likelihood as a function of i likelihood as a function of o

L(p, 0% x) = ﬁ exp (_%)
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ML estimation of a univariate Gaussian pdf

N N M (™)
LL(p, 02| D) = —= log(2m) — = Iog Z
n=1
OLL(p,0%| D) _ X —
e 129 =0
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Point estimation vs interval estimation (f)

Estimating p(x| C) from training data set D, i.e. p(x|D)
@ based on point estimation (e.g. ML, MAP)
p(x| D) = p(x|A\), A =(u",0%)

@ based on interval estimation (Bayesian estimation)
p(x| D) = [ plx| A. D)p(AID)dA
— [ plx| Mp(AID)dN

p(D|N)p(N)
J p(D|N)p(A)dA

where p(A| D) =
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Covariance matrix

Sample covariance matrix:

011 -+ O1d

1 N
E = : - . . —= Z x(n) x(n) J—

Od1 ** Odd n=1

e Symmetric: X7 =% and (X717 = X!
@ Positive definite: x'Xx >0, and x' X 1x > 0
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Properties of covariance matrix (1)

S>=VvDVT
Vit -+ Vid M 0 Vi1
Va1 - Vdd 0 Ad Va1

= (V17 s 7Vd) Diag(Ah . '7)\d) (V17 s 7vd)T

@ v; : eigen vector, \; : eigen value
v, = \v;

e\ >0, |vil=1

° |X[= H7:1 Ai

o S0 =T A
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Properties of covariance matrix (1)

e rank(X)

o the number of linearly independent columns (or rows)
e the number of bases (i.e. the dimension of the column
space)

rank(X) =d — V;, : N\ >0
V,’;gj . V,'J_Vj
X >0

rank(¥) <d — 3, : A\ =0
iy = villvg

5] =0
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Geometry of covariance matrix (1)

X
<0 AN

X, x‘l
Sort eigen values: A\; >\ > ... > Ny

vi . eigen vector of \;

v, : eigen vector of \,

= V1TX ., Var(y1) = M\
Vo = V;’-X , Var(vf)) =X\
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Geometry of covariance matrix (1)

o () :

V2 :)’2/\/>\_1
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Problems with the estimation of covariance matrix

e |X| — 0 when
e the amount of training data is small
e the dimensionality of feature vector is high

@ X! gets rather unstable even if it exists

@ Solutions?

@ Assume a diagonal covariance matrix rather than a 'full’
covariance matrix.

@ Reduce the dimensionality by transforming the data into a
low-dimensional vector space (PCA).

@ Another regularisation:
e Add a small positive number to the diagonal elements
X +— X+ el
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What if |3;| are the sam_
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Summary

@ Maximum likelihood estimation (MLE)
@ Properties of covariance matrix

@ Practical problem with covariance matrix estimation
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