Inf2b Learning and Data

Lecture 10: Discrimination functions

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Inf2b Learning and Data: Lecture 10

Discrimination functio

- Today's Schedule
- Decision Regions

Decision Regions

- Decision Boundaries for minimum error rate classification
- Oeiscriminant Functions

Inf2b Learning and Data: Lecture 10 Discrimination function

Decision regions

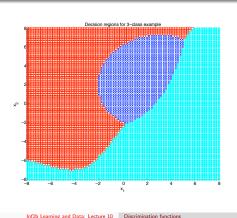
Recall Bayes Rule:

$$P(c_i|\mathbf{x}) = \frac{p(\mathbf{x}|c_i)P(c_i)}{p(\mathbf{x})}$$

- Given an unseen point \mathbf{x} , we assign to the class for which $P(c_i|x)$ is largest.
- Thus x-space (the input space) may be regarded as being divided into decision regions R_i such that a point falling in R_i is assigned to class c_i.
- Decision region R_i need not be contiguous, but may consist of several disjoint regions each associated with class c_i.
- The boundaries between these regions are called decision boundaries

nf2b Learning and Data: Lecture 10 Discrimination function

Gaussians estimated from data



Placement of decision boundaries

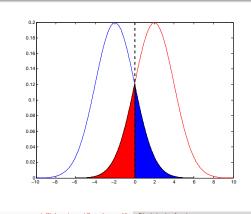
- Consider a 1-dimensional feature space (x) and two classes c_1 and c_2 .
- How to place the decision boundary to minimize the probability of misclassification?
- Misclassification errors P(error|x):
 - **3** assigning x to c_2 when it belongs to c_1 (x is in \mathcal{R}_2 when it belongs to c_1) $\cdots P(c_1|x)$
 - ② assigning x to c_1 when it belongs to c_2 (x is in \mathcal{R}_1 when it belongs to c_2) $\cdots P(c_2|x)$
- Total probability of error:

$$P(\text{error}) = \int P(\text{error}|x)p(x)dx = P(x \in \mathcal{R}_2, c_1) + P(x \in \mathcal{R}_1, c_2)$$

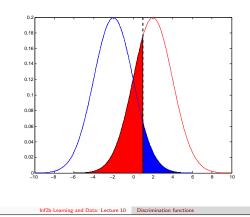
$$= P(x \in \mathcal{R}_2|c_1)P(c_1) + P(x \in \mathcal{R}_1|c_2)P(c_2)$$

$$= \int_{\mathcal{R}_2} p(x|c_1)P(c_1) dx + \int_{\mathcal{R}_1} p(x|c_2)P(c_2) dx$$

Decision boundaries and misclassification



Decision boundaries and misclassification



Minimising probability of misclassification

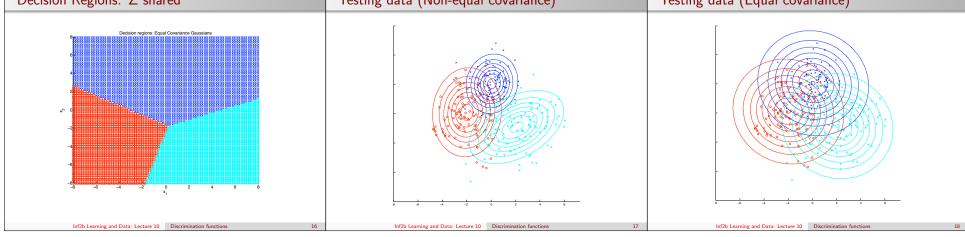
$$P(error) = \int_{\mathcal{R}_2} p(x \, | \, c_1) \, P(c_1) \, dx + \int_{\mathcal{R}_1} p(x \, | \, c_2) \, P(c_2) \, dx$$

- To minimise P(error): For a given x if $p(x|c_1)P(c_1) > p(x|c_2)P(c_2)$, then point x should be in region \mathcal{R}_1
- The probability of misclassification is thus minimised by assigning each point to the class with the maximum posterior probability (Bayes decision rule / MAP decision rule / minimum error rate classification)
- This justification for the maximum posterior probability may be extended to d-dimensional feature vectors and K classes

Inf2b Learning and Data: Lecture 10

iscrimination functions

	Discriminant functions	Discriminant functsions for Gaussian pdfs	
 Decision Regions Decision Boundaries for minimum error rate classification Deiscriminant Functions 	 We can express a classification rule in terms of a discriminant function y_c(x) for each class, such that x is assigned to class c if: y_c(x) > y_k(x) ∀ k ≠ c If we assign x to class c with the highest posterior probability P(c x), then the posterior probability or the log posterior probability forms a suitable discriminant function: y_c(x) = ln P(C x) ∝ ln p(x c) + ln P(c) Decision boundaries are defined when the discriminant functions are equal: y_k(x) = y_ℓ(x) Decision boundaries are not changed by monotonic transformations (such as taking the log) of the discriminant functions. 	• What is the form of the discriminant function when using a Gaussian pdf? • If the discriminant function is the log posterior probability: $y_c(\mathbf{x}) = \ln p(\mathbf{x} C) + \ln P(C)$ • Then, substituting in the log probability of a Gaussian and dropping constant terms we obtain: $y_c(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}_c^{-1}(\mathbf{x} - \boldsymbol{\mu}_c) - \frac{1}{2} \ln \boldsymbol{\Sigma}_c + \ln P(C)$ • This function is quadratic in \mathbf{x}	
Inf2b Learning and Data: Lecture 10 Discrimination functions 10	Inf2b Learning and Data: Lecture 10 Discrimination functions 11	Inf2b Learning and Data: Lecture 10 Discrimination functions 1	
Gaussians estimated from training data	Decision Regions	Equal Covariance Gaussians estimated from the	
Inf2b Learning and Data: Lecture 10 Discrimination functions 13	Decision regions for 3-class example	In/2b Learning and Data: Lecture 10 Discrimination functions	
Decision Regions: Σ shared	Testing data (Non-equal covariance)	Testing data (Equal covariance)	
Decision regions: Equal Covariance Gaussians			



Results

Non-equal covariance Gaussians

		True class		
Test Data		A	В	C
ed	Α	77	5	9
55	В	15	88	2
	С	8	7	89
	ed	ed A	Data A ed A 77	Data A B ed A 77 5

Fraction correct: (77 + 88 + 89)/300 = 254/300 = 0.85.

Equal covariance Gaussians

		True class			
Test Data		Α	В	С	
Predicted	Α	80	10	8	
class	В	14	90	6	
	C	6	0	86	

Fraction correct: (80 + 90 + 86)/300 = 256/300 = 0.85.

Gaussians with equal covariance

• Consider the special case in which the Gaussian pdfs for each class all share the same class-independent covariance matrix: $\Sigma_c = \Sigma$, $\forall c$

$$y_c(\mathbf{x})^{(org)} = -rac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_c)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_c) - rac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(c)$$

$$y_c(\mathbf{x}) = (\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1}) \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \ln P(c)$$
$$= \mathbf{w}_c^T \mathbf{x} + w_{c0}$$

$$\mathbf{w}_c^T = oldsymbol{\mu}_c^T oldsymbol{\Sigma}^{-1}, \quad w_{c0} = -rac{1}{2} oldsymbol{\mu}_c^T oldsymbol{\Sigma}^{-1} oldsymbol{\mu}_c + \ln P(c)$$

• This is called a linear discriminant function, as it is a linear function of x.

Inf2b Learning and Data: Lecture 10 Discrimination functions

Linear discriminant: decision boundary for equal covariance Gaussians



- In two dimensions the boundary is a line
- In three dimensions it is a plane
- In d dimensions it is a hyperplane (i.e. $\{ \mathbf{x} \mid \mathbf{w}_{c}^{T} \mathbf{x} + w_{c0} = 0 \}$)

Inf2b Learning and Data: Lecture 10 Discrimination func

Spherical Gaussians with Equal Covariance

• Spherical Gaussians have a diagonal covariance matrix, with the same variance in each dimension

$$oldsymbol{\Sigma} = \sigma^2 oldsymbol{\mathsf{I}}$$
 $oldsymbol{\Sigma}^{-1} = rac{1}{\sigma^2} oldsymbol{\mathsf{I}}$

• If we further assume that the prior probabilities of each class are equal, we can write the discriminant function as

$$y_c(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_c||^2}{2\sigma^2} + \ln P(c)$$

• If the prior probabilities are equal for all classes, the decision rule: "assign a test data to the class whose mean is closest".

In this case the class means (μ_c) may be regarded as class templates or prototypes.

Inf2b Learning and Data: Lecture 10 Discrimination functions

Two-clas linear discriminants

• For a two class problem, the log odds can be used as a single discriminant function:

$$y(\mathbf{x}) = \ln \frac{P(c_1 | \mathbf{x})}{P(c_2 | \mathbf{x})} = \ln \frac{p(\mathbf{x} | c_1) P(c_1)}{p(\mathbf{x} | c_2) P(c_2)}$$

= $\ln p(\mathbf{x} | c_1) - \ln p(\mathbf{x} | c_2) + \ln P(c_1) - \ln P(c_2)$

• If the pdf is a Gaussian with the shared covariance matrix. we have a linear discriminant:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

w and w_0 are functions of $\mu_1, \mu_2, \Sigma, P(c_1)$, and $P(c_2)$.

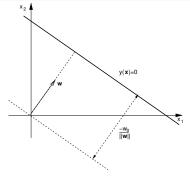
• Let \mathbf{x}_a and \mathbf{x}_b be two points on the decision boundary

$$\mathbf{w}^T \mathbf{x}_a + w_0 = \mathbf{w}^T \mathbf{x}_b + w_0 = 0$$

$$\mathbf{w}^T(\mathbf{x}_a - \mathbf{x}_b) = 0$$
, i.e. $\mathbf{w} \perp (\mathbf{x}_a - \mathbf{x}_b)$

Inf2b Learning and Data: Lecture 10 Discrimination functions

Geometry of a two-class linear discriminant



- w is normal to any vector on the hyperplane decision boundary
- If x is a point on the hyperplane, then the normal

Summary

- Obtaining decision boundaries from probability models and a decision rule
- Minimising the probability of error
- Discriminant functions and Gaussian pdfs
- Linear discriminants and Gaussians with equal covariance
- There are many other ways to train discriminants