Inf2b Learning and Data Lecture 10: Discrimination functions

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Today's Schedule

2 Decision Boundaries for minimum error rate classification

Decision regions

• Recall Bayes Rule:

$$\mathsf{P}(c_i|\mathbf{x}) = rac{p(\mathbf{x}|c_i)P(c_i)}{p(\mathbf{x})}$$

- Given an unseen point **x**, we assign to the class for which $P(c_i|x)$ is largest.
- Thus x-space (the input space) may be regarded as being divided into decision regions R_i such that a point falling in R_i is assigned to class c_i.
- Decision region \mathcal{R}_i need not be contiguous, but may consist of several disjoint regions each associated with class c_i .
- The boundaries between these regions are called decision boundaries

Gaussians estimated from data

Decision Regions

Placement of decision boundaries

- Consider a 1-dimensional feature space (x) and two classes c_1 and c_2 .
- How to place the decision boundary to minimize the probability of misclassification?
- Misclassification errors P(error|x):
 - assigning x to c_2 when it belongs to c_1 (x is in \mathcal{R}_2 when it belongs to c_1) $\cdots P(c_1|x)$
 - **2** assigning x to c_1 when it belongs to c_2 (x is in \mathcal{R}_1 when it belongs to c_2) $\cdots P(c_2|x)$
- Total probability of error:

$$P(\text{error}) = \int P(\text{error}|x)p(x)dx = P(x \in \mathcal{R}_2, c_1) + P(x \in \mathcal{R}_1, c_2)$$

= $P(x \in \mathcal{R}_2|c_1)P(c_1) + P(x \in \mathcal{R}_1|c_2)P(c_2)$
= $\int_{\mathcal{R}_2} p(x|c_1)P(c_1) dx + \int_{\mathcal{R}_1} p(x|c_2)P(c_2) dx$

Decision boundaries and misclassification

Decision boundaries and misclassification

Minimising probability of misclassification

$$P(\text{error}) = \int_{\mathcal{R}_2} p(x \,|\, c_1) \, P(c_1) \, \mathrm{d}x + \int_{\mathcal{R}_1} p(x \,|\, c_2) \, P(c_2) \, \mathrm{d}x$$

- To minimise P(error):
 For a given x if p(x|c₁)P(c₁) > p(x|c₂)P(c₂), then point x should be in region R₁
- The probability of misclassification is thus minimised by assigning each point to the class with the maximum posterior probability (Bayes decision rule / MAP decision rule / minimum error rate classification)
- This justification for the maximum posterior probability may be extended to d-dimensional feature vectors and K classes

2 Decision Boundaries for minimum error rate classification

Discriminant functions

 We can express a classification rule in terms of a discriminant function y_c(x) for each class, such that x is assigned to class c if:

 $y_c(\mathbf{x}) > y_k(\mathbf{x}) \quad \forall \ k \neq c$

 If we assign x to class c with the highest posterior probability P(c|x), then the posterior probability or the log posterior probability forms a suitable discriminant function:

 $y_c(\mathbf{x}) = \ln P(C | \mathbf{x}) \propto \ln p(\mathbf{x} | c) + \ln P(c)$

- Decision boundaries are defined when the discriminant functions are equal: y_k(x) = y_l(x)
- Decision boundaries are not changed by monotonic transformations (such as taking the log) of the discriminant functions.

Discriminant functsions for Gaussian pdfs

- What is the form of the discriminant function when using a Gaussian pdf?
- If the discriminant function is the log posterior probability: $y_c(\mathbf{x}) = \ln p(\mathbf{x}|C) + \ln P(C)$
- Then, substituting in the log probability of a Gaussian and dropping constant terms we obtain:

$$y_c(\mathbf{x}) = -rac{1}{2}(\mathbf{x}-oldsymbol{\mu}_c)^T \Sigma_c^{-1}(\mathbf{x}-oldsymbol{\mu}_c) - rac{1}{2}\ln|\Sigma_c| + \ln P(C)$$

• This function is quadratic in x

Gaussians estimated from training data

Decision Regions

Equal Covariance Gaussians estimated from the data

Inf2b Learning and Data: Lecture 10 Discrimination functions

Decision Regions: Σ shared

Testing data (Non-equal covariance)

Testing data (Equal covariance)

Results

• Non-equal covariance Gaussians

		True class		
Test Data		Α	В	С
Predicted	Α	77	5	9
class	В	15	88	2
	С	8	7	89

Fraction correct: (77 + 88 + 89)/300 = 254/300 = 0.85.

• Equal covariance Gaussians

		True class		
Test Data		A	В	С
Predicted	Α	80	10	8
class	В	14	90	6
	С	6	0	86

Fraction correct: (80 + 90 + 86)/300 = 256/300 = 0.85.

Gaussians with equal covariance

 Consider the special case in which the Gaussian pdfs for each class all share the same class-independent covariance matrix: Σ_c = Σ, ∀c

$$y_c(\mathbf{x})^{(org)} = -rac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_c)^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}_c) - rac{1}{2}\ln|\Sigma| + \ln P(c)$$

$$y_c(\mathbf{x}) = (\boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1}) \, \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_c^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \ln P(c)$$
$$= \mathbf{w}_c^T \mathbf{x} + w_{c0}$$

where

$$\mathbf{w}_c^{\mathsf{T}} = \boldsymbol{\mu}_c^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}, \quad w_{c0} = -\frac{1}{2} \boldsymbol{\mu}_c^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_c + \ln P(c)$$

 This is called a linear discriminant function, as it is a linear function of x.

Linear discriminant: decision boundary for equal covariance Gaussians

- In two dimensions the boundary is a line
- In three dimensions it is a plane
- In d dimensions it is a hyperplane
 (i.e. {x | w_c^Tx + w_{c0} = 0})

Spherical Gaussians with Equal Covariance

• Spherical Gaussians have a diagonal covariance matrix, with the same variance in each dimension

$$\Sigma = \sigma^2 \mathbf{I}$$

 $\Sigma^{-1} = rac{1}{\sigma^2} \mathbf{I}$

- If we further assume that the prior probabilities of each class are equal, we can write the discriminant function as $y_c(\mathbf{x}) = -\frac{||\mathbf{x} \boldsymbol{\mu}_c||^2}{2\sigma^2} + \ln P(c)$
- If the prior probabilities are eqaul for all classes, the decision rule: "assign a test data to the class whose mean is closest".

In this case the class means (μ_c) may be regarded as class templates or prototypes.

Two-clas linear discriminants

• For a two class problem, the log odds can be used as a single discriminant function:

$$y(\mathbf{x}) = \ln \frac{P(c_1 | \mathbf{x})}{P(c_2 | \mathbf{x})} = \ln \frac{p(\mathbf{x} | c_1) P(c_1)}{p(\mathbf{x} | c_2) P(c_2)}$$

= $\ln p(\mathbf{x} | c_1) - \ln p(\mathbf{x} | c_2) + \ln P(c_1) - \ln P(c_2)$

• If the pdf is a Gaussian with the shared covariance matrix, we have a linear discriminant:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

w and w_0 are functions of $\mu_1, \mu_2, \Sigma, P(c_1)$, and $P(c_2)$.

Let x_a and x_b be two points on the decision boundary
 w^Tx_a + w₀ = w^Tx_b + w₀ = 0
 w^T(x_a - x_b) = 0, i.e. w ⊥ (x_a - x_b)

Geometry of a two-class linear discriminant

- w is normal to any vector on the hyperplane decision boundary
- If **x** is a point on the hyperplane. then the normal

- Obtaining decision boundaries from probability models and a decision rule
- Minimising the probability of error
- Discriminant functions and Gaussian pdfs
- Linear discriminants and Gaussians with equal covariance
- There are many other ways to train discriminants