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Today’s Schedule

1 Decision Regions

2 Decision Boundaries for minimum error rate classification

3 Deiscriminant Functions
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Decision regions

Recall Bayes Rule:

P(ci |x) =
p(x|ci)P(ci)

p(x)

Given an unseen point x, we assign to the class for which
P(ci |x) is largest.

Thus x-space (the input space) may be regarded as being
divided into decision regions Ri such that a point falling
in Ri is assigned to class ci .

Decision region Ri need not be contiguous, but may
consist of several disjoint regions each associated with
class ci .

The boundaries between these regions are called decision
boundaries
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Gaussians estimated from data
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Decision Regions
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Decision regions for 3−class example
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Placement of decision boundaries

Consider a 1-dimensional feature space (x) and two
classes c1 and c2.

How to place the decision boundary to minimize the
probability of misclassification?
Misclassification errors P(error|x):

1 assigning x to c2 when it belongs to c1 (x is in R2 when
it belongs to c1) · · ·P(c1|x)

2 assigning x to c1 when it belongs to c2 (x is in R1 when
it belongs to c2) · · ·P(c2|x)

Total probability of error:

P(error) =

∫
P(error|x)p(x)dx = P(x ∈ R2, c1) + P(x ∈ R1, c2)

= P(x ∈ R2|c1)P(c1) + P(x ∈ R1|c2)P(c2)

=

∫
R2

p(x |c1)P(c1) dx +

∫
R1

p(x |c2)P(c2) dx
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Decision boundaries and misclassification
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Decision boundaries and misclassification
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Minimising probability of misclassification

P(error) =

∫
R2

p(x |c1)P(c1) dx +

∫
R1

p(x |c2)P(c2) dx

To minimise P(error):
For a given x if p(x |c1)P(c1) > p(x |c2)P(c2), then point
x should be in region R1

The probability of misclassification is thus minimised by
assigning each point to the class with the maximum
posterior probability (Bayes decision rule / MAP decision
rule / minimum error rate classification)

This justification for the maximum posterior probability
may be extended to d-dimensional feature vectors and K
classes
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1 Decision Regions

2 Decision Boundaries for minimum error rate classification

3 Deiscriminant Functions
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Discriminant functions

We can express a classification rule in terms of a
discriminant function yc(x) for each class, such that x is
assigned to class c if:

yc(x) > yk(x) ∀ k 6= c

If we assign x to class c with the highest posterior
probability P(c |x), then the posterior probability or the
log posterior probability forms a suitable discriminant
function:

yc(x) = lnP(C |x) ∝ ln p(x |c) + lnP(c)

Decision boundaries are defined when the discriminant
functions are equal: yk(x) = y`(x)

Decision boundaries are not changed by monotonic
transformations (such as taking the log) of the
discriminant functions.
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Discriminant functsions for Gaussian pdfs

What is the form of the discriminant function when using
a Gaussian pdf?

If the discriminant function is the log posterior probability:

yc(x) = ln p(x|C ) + lnP(C )

Then, substituting in the log probability of a Gaussian
and dropping constant terms we obtain:

yc(x) = −1

2
(x− µc)TΣ−1c (x− µc)− 1

2
ln |Σc |+ lnP(C )

This function is quadratic in x
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Gaussians estimated from training data
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Decision Regions
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Decision regions for 3−class example
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Equal Covariance Gaussians estimated from the

data
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Decision Regions: Σ shared
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Decision regions: Equal Covariance Gaussians
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Testing data (Non-equal covariance)
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Testing data (Equal covariance)
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Results

Non-equal covariance Gaussians

True class
Test Data A B C

Predicted A 77 5 9
class B 15 88 2

C 8 7 89

Fraction correct: (77 + 88 + 89)/300 = 254/300 = 0.85.
Equal covariance Gaussians

True class
Test Data A B C

Predicted A 80 10 8
class B 14 90 6

C 6 0 86

Fraction correct: (80 + 90 + 86)/300 = 256/300 = 0.85.
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Gaussians with equal covariance

Consider the special case in which the Gaussian pdfs for
each class all share the same class-independent covariance
matrix: Σc = Σ, ∀ c

yc(x)(org) = −1

2
(x− µc)TΣ−1(x− µc)− 1

2
ln |Σ|+ lnP(c)

yc(x) =
(
µT

c Σ
−1) x− 1

2
µT

c Σ
−1µc + lnP(c)

= wT
c x + wc0

where

wT
c = µT

c Σ
−1, wc0 = −1

2
µT

c Σ
−1µc + lnP(c)

This is called a linear discriminant function, as it is a
linear function of x.
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Linear discriminant: decision boundary for equal covariance

Gaussians

C2

x1

x2

y1(x)=y2(x)
C1

In two dimensions the boundary is a line

In three dimensions it is a plane

In d dimensions it is a hyperplane
(i.e. {x | wT

c x + wc0 = 0})
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Spherical Gaussians with Equal Covariance

Spherical Gaussians have a diagonal covariance matrix,
with the same variance in each dimension

Σ = σ2I

Σ−1 =
1

σ2
I

If we further assume that the prior probabilities of each
class are equal, we can write the discriminant function as

yc(x) = −||x− µc ||2

2σ2
+ lnP(c)

If the prior probabilities are eqaul for all classes,
the decision rule: “assign a test data to the class whose
mean is closest”.

In this case the class means (µc) may be regarded as
class templates or prototypes.
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Two-clas linear discriminants

For a two class problem, the log odds can be used as a
single discriminant function:

y(x) = ln
P(c1 |x)

P(c2 |x)
= ln

p(x |c1)P(c1)

p(x |c2)P(c2)

= ln p(x |c1)− ln p(x |c2) + lnP(c1)− lnP(c2)

If the pdf is a Gaussian with the shared covariance matrix,
we have a linear discriminant:

y(x) = wTx + w0

w and w0 are functions of µ1,µ2,Σ,P(c1), and P(c2).

Let xa and xb be two points on the decision boundary

wTxa + w0 = wTxb + w0 = 0

wT (xa − xb) = 0, i .e. w ⊥ (xa − xb)
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Geometry of a two-class linear discriminant
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w is normal to any vector on the hyperplane decision
boundary
If x is a point on the hyperplane, then the normal
distance from the hyperplane to the origin is given by:

` =
wTx

||w||
= − w0

||w||
(using y(x) = 0)
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Summary

Obtaining decision boundaries from probability models
and a decision rule

Minimising the probability of error

Discriminant functions and Gaussian pdfs

Linear discriminants and Gaussians with equal covariance

There are many other ways to train discriminants
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