Inf2b Learning and Data

Lecture 9: Multivariate Gaussians and Classification

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Today's Schedule

- The multidimensional Gaussian distribution (recap.)
- Bayes theorem and probability densities
- 1-dimensional Gaussian classifier
- Multivariate Gaussian classifier
- Evaluation of classifier performance

• The 1-dimensional Gaussian is a special case of this pdf

function of the following form:

covariance matrix Σ .

The multidimensional Gaussian distribution

• The *d*-dimensional vector $\mathbf{x} = (x_1, \dots, x_d)^T$ is multivariate Gaussian if it has a probability density

• The argument to the exponential $\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})$ is referred to as a quadratic form.

 $p(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right).$

The pdf is parameterised by the mean vector μ and the

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Covariance matrix

• The mean vector μ is the expectation of \mathbf{x} :

$$\mu = E[x]$$

ullet The covariance matrix Σ is the expectation of the deviation of x from the mean:

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

• Σ is a $d \times d$ symmetric matrix:

$$\sigma_{ij} = E[(x_i - \mu_i)(x_j - \mu_j)] = E[(x_j - \mu_j)(x_i - \mu_i)] = \sigma_{ji}$$
.

- The sign of the covariance helps to determine the relationship between two components:
 - If x_i is large when x_i is large, then $(x_i \mu_i)(x_i \mu_i)$ will tend to be positive;
 - If x_i is small when x_i is large, then $(x_i \mu_i)(x_i \mu_i)$ will tend to be negative.

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

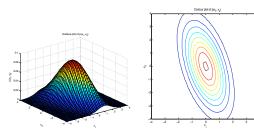
Covariance matrix (cont.)

$$\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \cdots & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \sigma_{ii} & \vdots \\ \vdots & \vdots & & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \cdots & \sigma_{dd} \end{pmatrix}$$

- $\sigma_i^2 = \sigma_{ii}$
- ullet $|\Sigma| = \mathsf{det}(\Sigma)$: determinant

e.g.
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \times d - b \times c$$

2-D Gaussian with a full covariance matrix



$$\mu = \left(egin{array}{c} 0 \ 0 \end{array}
ight) \qquad \Sigma = \left(egin{array}{cc} 1 & -1 \ -1 & 4 \end{array}
ight) \qquad
ho_{12} = -0.5$$

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Parameter estimation

Maximum likelihood estimation (MLE):

$$\mu = E[\mathbf{x}]$$

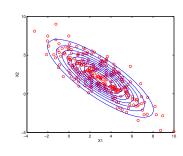
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{(i)}$$

$$\Sigma = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T]$$

$$\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})(\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})^T$$

Example data

Maximum likelihood fit to a Gaussian



Bayes theorem and probability densities

 Rules for probability densities are similar to those for probabilities:

$$p(x,y) = p(x|y)p(y)$$
$$p(x) = \int p(x,y)dy$$

 We may mix probabilities of discrete variables and probability densities of continuous variables:

$$p(x, Z) = p(x|Z)P(Z)$$

Baves theorem for continuous data x and class C:

$$P(C|x) = \frac{p(x|C)P(C)}{P(x)}$$

$$P(C|x) \propto p(x|C)P(C)$$

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Bayes theorem and univariate Gaussians

• If p(x|C) is Gaussian with mean μ_c and variance σ_c^2 :

$$P(C|x) \propto p(x|C) P(C) = N(x; \mu_c, \sigma_c^2) P(C)$$

$$\propto \frac{1}{\sqrt{2\pi\sigma_c^2}} \exp\left(\frac{-(x - \mu_c)^2}{2\sigma_c^2}\right) P(C)$$

• Taking logs, we have the log likelihood LL(x|C):

$$\begin{split} LL(x | \mu_c, \sigma_c^2) &= \ln \rho(x | \mu_c, \sigma_c^2) \\ &= \frac{1}{2} \left(-\ln(2\pi) - \ln \sigma_c^2 - \frac{(x - \mu_c)^2}{\sigma_c^2} \right) \end{split}$$

• The log posterior probability LP(C|x) is:

$$\begin{aligned} LP(C \mid x) &\propto LL(x \mid C) + LP(C) \\ &\propto \frac{1}{2} \left(-\ln(2\pi) - \ln\sigma_c^2 - \frac{(x - \mu_c)^2}{\sigma_c^2} \right) + \ln P(C) \end{aligned}$$

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Example: 1-dimensional Gaussian classifier

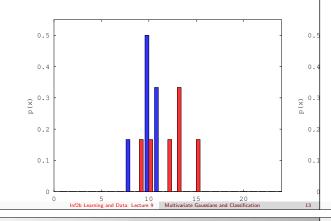
• Two classes, S and T, with some observations:

 Assume that each class may be modelled by a Gaussian.
 The mean and variance of each pdf are estimated by the sample mean and sample variance:

$$\mu(S) = 10$$
 $\sigma^{2}(S) = 1$
 $\mu(T) = 12$ $\sigma^{2}(T) = 4$

nf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Gaussian pdfs for S and T vs histograms



Gaussian pdfs vs histograms

- Parametric methods vs nonparametric methods
- Discuss pros and cons.

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Example: 1-dimensional Gaussian classifier

 \bullet Two classes, S and T, with some observations:

 Assume that each class may be modelled by a Gaussian.
 The mean and variance of each pdf are estimated by the sample mean and sample variance:

$$\mu(S) = 10$$
 $\sigma^{2}(S) = 1$
 $\mu(T) = 12$ $\sigma^{2}(T) = 4$

• The following unlabelled data points are available:

$$x^{(1)} = 10, \quad x^{(2)} = 11, \quad x^{(3)} = 6$$

To which class should each of the data points be assigned?

Assume the two classes have equal prior probabilities.

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Log odds

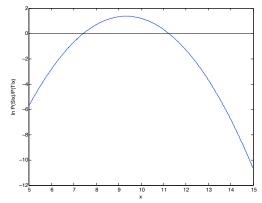
• Take the log odds (posterior probability ratios):

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_s)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right) + \ln P(S) - \ln P(T)$$

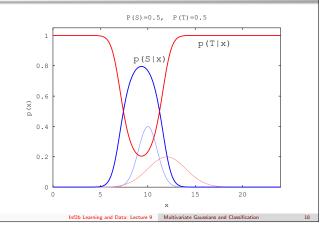
• In the example the priors are equal, so:

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_S)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right)$$
$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right)$$

 If log odds are less than 0 assign to T, otherwise assign to S.
 In/2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification Log odds



Log odds vs Posterior probabilities



Example: unequal priors • Now, assume P(S) = 0.3, P(T) = 0.7. Including this prior information, to which class should each of the above test data points $(x^{(1)}, x^{(2)}, x^{(3)})$ be assigned? • Again compute the log odds: $\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_s)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right) + \ln P(S) - \ln P(T)$ $= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right) + \ln P(S) - \ln P(T)$



Log odds

Training data

Multivariate Gaussian classifier

- Multivariate Gaussian (in d dimensions): $p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} \boldsymbol{\Sigma}^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})\right)$
- $\begin{array}{l} \bullet \ \ \text{Log likelihood:} \\ \mathcal{LL}(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{d}{2} \ln(2\pi) \frac{1}{2} \ln|\boldsymbol{\Sigma}| \frac{1}{2} (\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu}) \end{array}$
- If $p(C|\mathbf{x}) \sim p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the log posterior probability is: $\ln P(C|\mathbf{x}) \propto -\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(C) + \text{const.}$

f2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

Gaussians estimated from training data

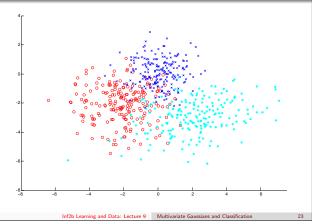
Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification Example

 $= -\frac{1}{2} \left((x - 10)^2 - \frac{(x - 12)^2}{4} - \ln 4 \right) + \ln(3/7)$

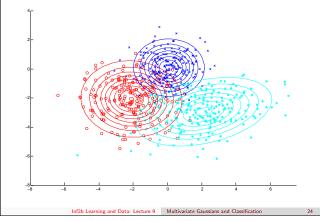
- 2-dimensional data from three classes (A, B, C).
- The classes have equal prior probabilities.
- 200 points in each class
- Load into Matlab (n × 2 matrices, each row is a data point) and display using a scatter plot:

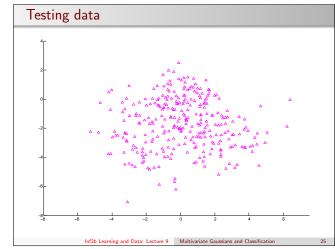
```
xa = load('trainA.dat');
xb = load('trainB.dat');
xc = load('trainC.dat');
hold on;
scatter(xa(:, 1), xa(:,2), 'r', 'o');
scatter(xb(:, 1), xb(:,2), 'b', 'x');
scatter(xc(:, 1), xc(:,2), 'c', '*');
```

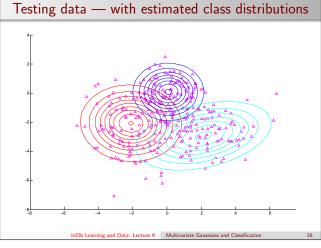
Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

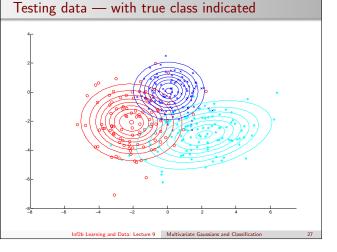


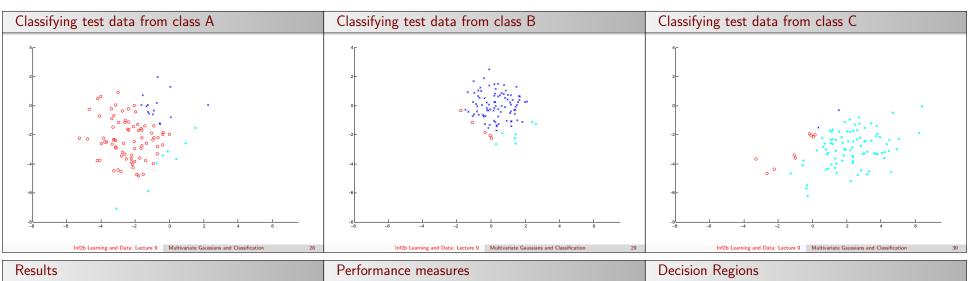
Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification











Analyze results by percent correct, and in more detail
with a confusion matrix
 Rows (or columns) of a confusion matrix correspond
the predicted classes (classifier outputs)

- Columns (or rows) correspond to the true class labels • Element (r, c) is the number of patterns from true class
- c that were classified as class r• Total number of correctly classified patterns is obtained by summing the numbers on the leading diagonal
- Confusion matrix in this case

	True class			
Test Dat	Α	В	C	
Predicted	Α	77	5	9
class	В	15	88	2
	C	8	7	89

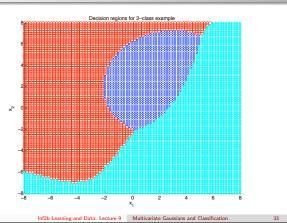
• Overall proportion of test patterns correctly classified is (77 + 88 + 89)/300 = 254/300 = 0.85

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classificati

- Precision (correct rate)
- Accuracy
- Confusion matrix
- F-measure (F1 score)

$$F_1 = 2 \frac{\mathsf{Precision} \times \mathsf{Recall}}{\mathsf{Precision} + \mathsf{Recall}}$$

• Receiver operating characteristic (ROC)



Example: Classifying spoken vowels

- 10 Spoken vowels in American English
- Vowels can be characterised by formant frequencies resonances of vocal tract
 - there are usually three or four identifiable formants
 - first two formants written as F1 and F2
- Peterson-Barney data recordings of spoken vowels by American men, women, and children
 - two examples of each vowel per person
 - for this example, data split into training and test sets
 - childrens data not used in this example
 - different speakers in training and test sets
- (see http://en.wikipedia.org/wiki/Vowel for more)
- Classify the data using a Gaussian classifier
- Assume equal priors

Inf2b Learning and Data: Lecture 9 Multivariate Gaussians and Classification

The data

Ten steady-state vowels, frequencies of F1 and F2 at their centre:

- IY bee
- IH big
- EH red
- AE at
- AH honey
- AA heart
- AO frost
- UH could
- UW you
- ER bird

Vowel data — 10 classes

