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Today’s Schedule

1 Continuous random variables

2 The Gaussian distribution (one-dimensional)

3 The multidimensional Gaussian distribution
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Discrete to continuous random variables

Fish example again:

c∗ = arg max
c

P(c |x) = arg max
c

P(x |c)P(c)

P(x)
= arg max

c
P(x |c)P(c)

What if the number of bins →∞ ? (i.e. the width of bin → 0)

P(X = x |C ) will be almost 0 everywhere!

We instead consider a cumulative distribution function (cdf)
with a continuous random variable:

F (x) = P(X ≤ x)
Inf2b Learning and Data: Lecture 8 Real-valued distributions and Gaussians 3



Cumulative distribution functions graphed
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Cumulative distribution function properties

Cumulative distribution functions have the following properties:

1 F (−∞) = 0;

2 F (∞) = 1;

3 If a ≤ b then F (a) ≤ F (b).

To obtain the probability of falling in an interval we can do the
following:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a)

= F (b)− F (a)
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Probability density function (pdf)

The rate of change of the cdf gives us the probability
density function (pdf) , p(x):

p(x) =
d

dx
F (x) = F ′(x)

F (x) =

∫ x

−∞
p(x) dx

p(x) is not the probability that X has value x . But the
pdf is proportional to the probability that X lies in a small
interval [x , x + dx ].

Notation: p for pdf, P for probability
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pdf and cdf

The probability that the random variable lies in interval (a, b)
is given by:

P(a < X ≤ b) = F (b)− F (a)

=

∫ b

−∞
p(x) dx −

∫ a

−∞
p(x) dx

=

∫ b

a

p(x) dx
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pdf and cdf

The probability that the random variable lies in interval (a, b)
is the area under the pdf between a and b:
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The Gaussian distribution

The Gaussian (or Normal) distribution is the most
common (and easily analysed) continuous distribution

It is also a reasonable model in many situations (the
famous bell curve)

If a (scalar) variable has a Gaussian distribution, then it
has a probability density function with this form:

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
The Gaussian is described by two parameters:

the mean µ (location)
the variance σ2 (dispersion)
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Plot of Gaussian distribution

Gaussians have the same shape, with the location
controlled by the mean, and the spread controlled by the
variance
One-dimensional Gaussian with zero mean and unit
variance
(µ = 0, σ2 = 1)
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Another plot of a Gaussian
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Properties of the Gaussian distribution

N(x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
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Facts about the Gaussian distribution

A Gaussian can be used to describe approximately any
random variable that tends to cluster around the mean

Concentration:

About 68% of values drawn from a normal distribution
are within one SD away from the mean
About 95% are within two SDs
About 99.7% lie within three SDs of the mean
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Central Limit Theorem

Under certain conditions, the sum of a large number of
random variables will have approximately normal
distribution.

Several other distributions are well approximated by the
Normal distribution:

Binomial B(n, p), when n is large and p is not too close
to 1 or 0
Poisson Po(λ) when λ is large
Other distributions including chi-squared and Students T

The Wikipedia entry on the Gaussian distribution is good
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Parameter estimation

Estimate mean and variance parameters of a Gaussian
from data x (1), x (2), . . . , x (n)

Use sample mean and sample variance estimates:

µ =
1

n

n∑
i=1

x (i) (sample mean)

σ2 =
1

n

n∑
i=1

(x (i) − µ)2 (sample variance),
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Example: Gaussians

A pattern recognition problem has two classes, S and T .
Some observations are available for each class:

Class S 10 8 10 10 11 11
Class T 12 9 15 10 13 13

The mean and variance of each pdf are estimated by the
sample mean and sample variance.

S : mean = 10; variance = 1
T : mean = 12; variance = 4
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Example: pdfs

Sketch the pdf for each class.
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Summary of one-dimensional Gaussians

Gaussians

Continuous random variable: cumulative distribution
function (cdf) and probability density function (pdf)

Gaussian pdf (one dimension):

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
Estimate parameters (mean and variance) using
maximum likelihood estimation (See Tutorial 8)
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The multidimensional Gaussian distribution

The d-dimensional vector x = (x1, . . . , xd)T is
multivariate Gaussian if it has a probability density
function of the following form:

p(x |µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The pdf is parameterised by the mean vector µ and the
covariance matrix Σ.

The 1-dimensional Gaussian is a special case of this pdf

The argument to the exponential 1
2
(x− µ)TΣ−1(x− µ)

is referred to as aquadratic form.

Inf2b Learning and Data: Lecture 8 Real-valued distributions and Gaussians 19



Covariance matrix

The mean vector µ is the expectation of x:

µ = E [x]

The covariance matrix ~Σ is the expectation of the
deviation of x from the mean:

Σ = E [(x− µ)(x− µ)T ]

Σ is a d × d symmetric matrix:

σij = E [(xi − µi)(xj − µj)] = E [(xj − µj)(xi − µi)] = σji .

The sign of the covariance helps to determine the
relationship between two components:

If xj is large when xi is large, then (xj − µj)(xi − µi ) will
tend to be positive;
If xj is small when xi is large, then (xj − µj)(xi − µi ) will
tend to be negative.
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Parameter estimation

Maximum likelihood estimation (MLE):

µ = E [x]

µ̂ =
1

n

n∑
i=1

x(i)

Σ = E [(x− µ)(x− µ)T ]

Σ̂ =
1

n

n∑
i=1

(x(i) − µ̂)(x(i) − µ̂)T
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Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation coefficient:

ρ(xi , xj) = ρij =
σij√
σiiσjj

Scale-independent (ie independent of the measurement
units) and location-independent, ie:

ρ(xi , xj) = ρ(axi + b, cxj + d)

The correlation coefficient satisfies −1 ≤ ρ ≤ 1, and

ρ(x , y) = +1 if y = ax + b a > 0

ρ(x , y) = −1 if y = ax + b a < 0
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Spherical Gaussian
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2-dimensional Gaussian with a diagonal covariance

matrix
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2-dimensional Gaussian with a full covariance

matrix
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Practical issues

Parameter estimation of multivariate Gaussian distribution can
be difficult
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Summary

Gaussians

Continuous random variable: cumulative distribution
function and probability density function

Univariate Gaussian pdf:

p(x |µ, σ2) = N(x ;µ, σ2) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
Multivariate Gaussian pdf:

p(x |µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
Estimate parameters (mean and covariance matrix) using
maximum likelihood estimation
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