Identifying Spam	Identifying Spam
Spam? I got your contact information from your countrys information directory during my desperate search for someone who can assist me secretly and confidentially in relocating and managing some family fortunes.	Spam? Dear Dr. Steve Renals, The proof for your article, Combining Spectral Representations for Large-Vocabulary Continuous Speech Recognition, is ready for your review. Please access your proof via the user ID and password provided below. Kindly log in to the website within 48 HOURS of receiving this message so that we may expedite the publication process.
Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 2	Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 3
Text Classification using Bayes Theorem	How do we represent <i>D</i> ?
 Document D, with a fixed set of classes C = {c₁,, c_K} Classify D as the class with the highest posterior probability: P(c_k D) = P(D c_k)P(c_k)/P(c_k) ∝ P(D c_k)P(c_k) How do we represent D? How do we estimate P(D c_k) and P(c_k)? 	 A sequence of words computational very expensive, difficult to train A set of words (Bag-of-Words) Ignore the position of the word Ignore the order of the word Consider the words in pre-defined vocabulary Bernoulli document model a document is represented by a binary feature vector, whose elements indicate absence or presence of corresponding word in the document Multinomial document model a document is represented by an integer feature vector, whose elements indicate frequency of corresponding word in the document
Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 5	Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 6
How do we estimate $P(D c_k)$ and $P(c_k)$?	Generative models for classification
Estimating the terms: (non-Bayesian) Priors: $P(C = c_k) \approx \frac{N_k}{N}$ $(N = \sum_k N_k)$ Likelihoods: assume $P(\mathbf{x} c_k) = \prod_{i=1}^d P(x_i c_k)$ (the naive bit) $\approx \prod_i \frac{n_{k,i}(x_i)}{N_k}$ Bayesian class estimation: $P(c_k \mathbf{x}) = \frac{P(\mathbf{x} c_k) P(c_k)}{P(\mathbf{x})} \propto P(\mathbf{x} c_k) P(c_k)$	Model for classification $P(c_{k} \mathbf{x}) = \frac{P(\mathbf{x} c_{k}) P(c_{k})}{P(\mathbf{x})} \propto P(\mathbf{x} c_{k}) P(c_{k})$ Model for observation \cdots generative model $P(\mathbf{x}) = \sum_{k=1}^{K} P(\mathbf{x} c_{k}) P(c_{k})$ Congratulations to you as we bring to your notice, . $O_{1} O_{2} O_{3} \cdots O_{L}$ P(O)
	Span? I got your contact information from your countrys information directory during my desperate search for someone who can assist me secretly and confidentially in relocating and managing some family fortunes. 2 Text Classification using Bayes Theorem • Document D, with a fixed set of classes $C = \{c_1,, c_K\}$ • Document D, with a fixed set of classes $C = \{c_1,, c_K\}$ • Classify D as the class with the highest posterior probability: $P(c_k D) = \frac{P(D c_k)P(c_k)}{P(D)} \propto P(D c_k)P(c_k)$ • How do we represent D? • How do we estimate $P(D c_k)$ and $P(c_k)$? Mow do we estimate $P(D c_k)$ and $P(c_k)$? Estimating the terms: (non-Bayesian) Priors: $P(C = c_k) \approx \frac{N_k}{N}$ ($N = \sum_k N_k$) Likelihoods: assume $P(\mathbf{x} c_k) = \prod_{i=1}^d P(x_i c_k)$ (the naive bit) $\approx \prod_i \frac{n_{k,i}(x_i)}{N_k}$ Bayesian class estimation:

Generative model — Bernoulli document model	Generative model — Multinomial document model	Bernoulli document model
$O_1 O_2 O_3 \cdots O_L \mid c_k$ (use each word at least once) $W_2 W_{14} W_{38}$ (use each word at least once) $W_2 W_{14} W_{16}$ (use each word at least once) $W_3 W_4 W_{38}$ (use each word at least once) $W_4 W_{38} W_{38}$ (use each word at least once) $W_{38} W_{38} W_{38}$ (use each word at least once) $W_{38} W_{38} W_{38} W_{38}$ (use each word at least once) $W_{38} W_{38} W_{38} W_{38}$ (use each word at least once) $W_{38} W_{38} W_{38} W_{38} W_{38}$ (use each word at least once) $W_{38} W_{38} W_{38} W_{38} W_{38} W_{38} W_{38} W_{38} W_{38} W_{38} W_$	$\begin{array}{c} 0_{1} \ 0_{2} \ 0_{3} \ \cdots \ 0_{L} \mid \mathbf{C}_{k} \\ 0_{k} \\ $	Features: $\mathbf{x} = (x_1, \dots, x_{ V })$: length $ V $ binary vector of word occurrences True generative process: $\mathbf{x} \leftarrow$ vector of zeros Human writes email when tth word used, set $x_t \leftarrow 1$ Model's generative process: for $t = 1$ to $ V $: Spin biased coin t if heads: $x_t \leftarrow 1$ else: $x_t \leftarrow 0$ Model bearing and Data: Lector 7 Text Classification using Naive Bayes
Classification with Bernoulli document model	Example	Example
Training Data: matrix B, document <i>i</i> feature vector: \mathbf{B}_i presence of word <i>t</i> in document <i>i</i> : B_{it} Parameter estimation: Priors: $P(c_k) \approx \frac{N_k}{N}$ Likelihoods: $P(w_t c_k) \approx \frac{n_k(w_t)}{N_k}$ (fraction of class <i>k</i> docs with word w_t)Classify new document D, feature vector: b $P(\mathbf{b} c_k) = \prod_{t=1}^{ V } [b_t P(w_t c_k) + (1-b_t)(1-P(w_t c_k))]$ $= \prod_{t=1}^{ V } P(w_t c_k)^{b_t}(1-P(w_t c_k))^{(1-b_t)}$ $P(c_k \mathbf{b}) \propto P(c_k) P(\mathbf{b} c_k)$	Classify documents as Sports (S) or Informatics (I) Vocabulary V: $w_1 = \text{goal}$ $w_2 = \text{tutor}$ $w_3 = \text{variance}$ $w_4 = \text{speed}$ $w_5 = \text{drink}$ $w_6 = \text{defence}$ $w_7 = \text{performance}$ $w_8 = \text{field}$ Inf2b Learning and Data: Letter 7 Text Classification using Naive Bayes 14	$\mathbf{B}^{\text{Sport}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
Example (cont.)	Multinomial document model	Classification with multinomial document model
Test documents: $\mathbf{b}_{1} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$ Priors, Likelihoods: $P(S) = 6/11$, $P(I) = 5/11$ $(P(w_{t} S)) = \begin{pmatrix} 3/6 & 1/6 & 2/6 & 3/6 & 3/6 & 4/6 & 4/6 & 0 \\ (P(w_{t} I)) = \begin{pmatrix} 1/5 & 3/5 & 3/5 & 1/5 & 1/5 & 1/5 & 3/5 & 1/5 \end{pmatrix}$ Posterior probabilites: $P(S \mathbf{b}_{1}) \propto P(S) \prod_{t=1}^{8} [b_{1t}P(w_{t} S) + (1 - b_{1t})(1 - P(w_{t} S))]$ $\propto \frac{6}{11} \left(\frac{1}{2} \times \frac{5}{6} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{2} \times \frac{2}{3} \times \frac{1}{3} \times \frac{2}{3}\right) = \frac{5}{891} = 5.6 \times 10^{-3}$ $P(I \mathbf{b}_{1}) \propto P(I) \prod_{t=1}^{8} [b_{1t}P(w_{t} I) + (1 - b_{1t})(1 - P(w_{t} I))]$ $\propto \frac{5}{11} \left(\frac{1}{5} \times \frac{2}{5} \times \frac{2}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} \times \frac{2}{5} \times \frac{1}{5}\right) = \frac{8}{859375} = 9.3 \times 10^{-6}$ \Rightarrow Classify this document as S.	Features: $\mathbf{x} = (x_1, \dots, x_{ V })$: length $ V $ integer vector of word counts True generative process: $\mathbf{x} \leftarrow$ vector of zeros human writes email whenever <i>t</i> th word used, $x_t \leftarrow x_t + 1$ Model's generative process: $\mathbf{x} \leftarrow$ vector of zeros for each word in document: $t \sim$ biased $ V $ -sided die $x_t \leftarrow x_t + 1$	Data: x_{it} : the count of the number of times w_t occurs in document i $z_{ik} = 1$ if document i is of class k , 0 otherwise Parameter estimation: Priors: $P(c_k) \approx \frac{N_k}{N}$ Likelihoods: $P(w_t c_k) \approx \frac{\sum_{i=1}^{N} x_{it} z_{ik}}{\sum_{t'=1}^{ V } \sum_{i=1}^{N} x_{it'} z_{ik}}$ the relative frequency of w_t in documents of class $C = k$ with respect to the total number of words in documents of that class Classify new document D , feature vector: x : $P(\mathbf{x} c_k) \propto \prod_{t=1}^{ V } P(w_t c_k)^{\mathbf{x}_t}$ NB: $P()^0 = 1$ $P(C \mathbf{x}) \propto P(C) P(\mathbf{x} c_k)$

Classification with multinomial document model	Multinomial distribution	Question
Assume a test document D is given as a sequece of words : (o_1, o_2, \dots, o_L) and $o_i \in V$. $P(\mathbf{x} \mid c_k) \propto \prod_{t=1}^{ V } P(w_t \mid c_k)^{x_t} = \prod_{i=1}^{L} P(o_i \mid c_k)$	$\mathbf{x} = (x_1, \dots, x_{ V })$ $P(\mathbf{x} \mid c_k) \propto \prod_{t=1}^{ V } P(w_t \mid c_k)^{x_t}$ To be more specific, $P(\mathbf{x} \mid c_k) = \frac{n!}{\prod_{t=1}^{ V } x_t!} \prod_{t=1}^{ V } P(w_t \mid c_k)^{x_t}$ where $n = \sum_{t=1}^{ V } x_t$, i.e. the total number of words in the document.	What's the approximate value of: P("the" C) (a) in the Bernoulli model (b) in the multinomial model? Common words, 'stop words', are often removed from feature
Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 19	Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 20	VeCtors. Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 21
Smoothing	Which document model should we use, Bernoulli or Multinomial?	Document pre-processing
A 'trick' to avoid zero counts: $P(w_t C = k) \approx \frac{1 + \sum_{i=1}^{N} x_{it} z_{ik}}{ V + \sum_{t'=1}^{ V } \sum_{i=1}^{N} x_{it'} z_{ik}}$ Add 'the dictionary' to the training data for each class Known as Laplace's rule of succession. Commonly used. Laplace's rule of succession can be derived from a Bayesian viewpoint. The imaginary counts can overwhelm the data for large 'vocabularies'. In later courses you may see more sophisticated smoothing methods.	Fig. 1 in A. McCallum and K.Nigam, "A Comparison of Event Models for Naive Bayes Text Classification", AAAI Workshop on Learning for Text Categorization, 1998	 Stop-word removal Remove pre-defined common words that are not specific or discriminatory to the different classes. Stemming Reduce different forms of the same word into a single word (base/root form) Feature selection e.g. choose words based on the mutual information
Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 22 Summary	Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 23	Inf2b Learning and Data: Lecture 7 Text Classification using Naive Bayes 24
Our first 'real' application of Naive Bayes Two models for documents: Bernoulli and Multinomial As always: be able to implement, describe, compare and contrast (see Lecture Note) Errata for Lecture Note 7: Section 6 (page 9), remove Item 6: 6. Non-occurring words: Bernoulli: affect the document probabilities. Multinomial: do not affect the document probabilities.		