Inf2b Learning and Data

Lecture 6: Naive Bayes

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Inf2b Learning and Data: Lecture 6 Naive Baye

Today's Schedule

- Bayes decision rule review
- The curse of dimensionality
- Naive Bayes
- Text classification using Naive Bayes (introduction)

Inf2b Learning and Data: Lecture 6 Naive Bayes

where $P(c_k | \mathbf{x})$: posterior

 $P(\mathbf{x} \mid c_k)$: likelihood $P(c_k)$: prior

 $= \underset{c_k}{\operatorname{arg \, max}} P(\mathbf{x}|c_k)P(c_k)$

Class $C = \{c_1, \ldots, c_K\}$; input features $X = \mathbf{x}$

Most probable class: (maximum posterior class)

⇒ Minimum error (misclassification) rate classification

(PRML C. M. Bishop (2006) Section 1.5)

 $= \arg \max_{c_k} \frac{P(\mathbf{x} \mid c_k) \ P(c_k)}{P(\mathbf{x})} = \arg \max_{c_k} \frac{P(\mathbf{x} \mid c_k) \ P(c_k)}{\sum_{i=1}^K P(\mathbf{x} \mid c_i)}$

Fish classification (revisited)

Bayesian class estimation:

$$P(c_k | x) = \frac{P(x | c_k) P(c_k)}{P(x)} \propto P(x | c_k) P(c_k)$$

Estimating the terms: (Non-Bayesian)

Priors: $P(C=M) \approx \frac{N_M}{N_M + N_F}, \dots$

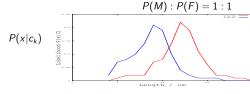
Likelihoods: $P(x \mid C = M) \approx \frac{n_M(x)}{N_M}$,

NB: These approximations work well only if we have enough data

Inf2b Learning and Data: Lecture 6 Naive Baye

Fish classification (revisited)

$$P(c_k|x) = \frac{P(x|c_k)P(c_k)}{P(x)}$$

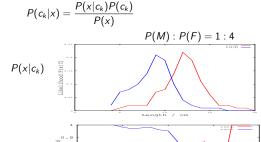


 $P(c_k|x)$

Fish classification (revisited)

Bayes decision rule (recap)

 $c^* = \operatorname{arg\,max} P(c_k \mid \mathbf{x})$



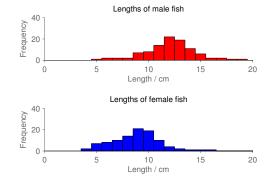
 $P(c_k|x)$

Inf2b Learning and Data: Lecture 6 Naive Bayes

Bayes decision rule review

- The curse of dimensionality
- Naive Bayes
- Text classification using Naive Bayes (introduction)

Inf2b Learning and Data: Lecture 6 Naive Baye How can we improve the fish classification?



More features!?

$$P(\mathbf{x} \mid c_k) \approx \frac{n_{c_k}(x_1, \ldots, x_d)}{N_{c_k}}$$

- 1D histogram
- 2D histogram
- 3D cube of numbers

100 binary variables, 2^{100} settings (the universe is $\approx 2^{98}$ picoseconds old)

In high dimensions almost all $n_C(x_1, \ldots, x_D)$ are zero

⇒ Bellman's "curse of dimensionality"

Avoiding the Curse of Dimensionality

Apply the chain rule?

$$P(\mathbf{x} | c_k) = P(x_1, x_2, \dots, x_d | c_k)$$

$$= P(x_1 | c_k) P(x_2 | x_1, c_k) P(x_3 | x_2, x_1, c_k) P(x_4 | x_3, x_2, x_1, c_k) \cdots$$

$$\cdots P(x_{d-1} | x_{d-2}, \dots, x_1, c_k) P(x_d | x_{d-1}, \dots, x_1, c_k)$$

Solution: assume structure in $P(\mathbf{x} \mid c_k)$

For example,

- Assume x_{i+1} depends on x_i only $P(\mathbf{x} | c_k) \approx P(x_1 | c_k) P(x_2 | x_1, c_k) P(x_3 | x_2, c_k) \cdots P(x_d | x_{d-1}, c_k)$
- ullet Assume $\mathbf{x} \in \mathcal{R}^d$ distributes in a low dimensional vector space
 - Dimensionality reduction by PCA (Principal Component Analysis) / KL-transform

 $\propto P(O, T, H, W|Play) P(Play)$

 $P(O, T, H, W|Play) \approx P(O|Play) P(T|Play) P(H|Play) P(W|Play)$

Inf2b Learning and Data: Lecture 6 Naive Bayes

 $P(Play|O, T, H, W) = \frac{P(O, T, H, W|Play) P(Play)}{P(O, T, H, W)}$

Avoiding the Curse of Dimensionality

- Apply smoothing windows (e.g. Parzen windows)
- Apply a probability distribution model (e.g. Normal dist.)
- Assume x_1, \ldots, x_d are independent from each other
- ⇒ Naive Bayes rule/model (or *idiot Bayes rule*)

$$P(x_1, x_2, \dots, x_d | c_k) \approx P(x_1 | c_k) P(x_2 | c_k) \cdots P(x_d | c_k)$$
$$= \prod_{i=1}^d P(x_i | c_k)$$

Is it reasonable?

Often not, of course!
Although it can still be *useful*.

Inf2b Learning and Data: Lecture 6 Naive Bayes

Example - game played depending on the weather

Outlook	Temperature	Humidity	Windy	Play
sunny	hot	high	false	NO
sunny	hot	high	true	NO
overcast	hot	high	false	YES
rainy	mild	high	false	YES
rainy	cool	normal	false	YES
rainy	cool	normal	true	NO
overcast	cool	normal	true	YES
sunny	mild	high	false	NO
sunny	cool	normal	false	YES
rainy	mild	normal	false	YES
sunny	mild	normal	true	YES
overcast	mild	high	true	YES
overcast	hot	normal	false	YES
rainy	mild	high	true	NO

$$P(\textit{Play}|\textit{O},\textit{T},\textit{H},\textit{W}) = \frac{P(\textit{O},\textit{T},\textit{H},\textit{W}|\textit{Play})P(\textit{O},\textit{T},\textit{H},\textit{W})}{P(\textit{Play})}$$

of combinations of $(O, T, H, W) = 3 \times 3 \times 2 \times 2 = 36$

Inf2b Learning and Data: Lecture 6 Naive Bayes

Applying Naive Bayes

Relative frequencies

Consider each feature independently to estimate P(O|Play), P(T|Play), P(H|Play), P(W|Play)

(-) 377 (-) 377 (-) 377 (-)

hot

mild

cool

Υ	N
2/9	3/5
4/9	0/5
3/9	2/5
	2/9 4/9

Humidity	Υ	N
high	3/9	4/5
normal	6/9	1/5

Windy	Υ	N
false	6/9	2/5
true	3/9	3/5

Temperature Y

Ν

2/9 2/5

4/9 2/5 3/9 1/5

There was play 9 out of 14 times: $P(\text{Play} = Y) \approx \frac{9}{14}$ In [2b Learning and Data: Lecture 6] Naive Bayes

Applying Naive Bayes

Posterior play probability: x = (sunny, cool, humid, windy)

 $P(\text{Play} \mid \mathbf{x}) \propto P(\mathbf{x} \mid \text{Play}) P(\text{Play})$

Estimating the Naive Bayes likelihood: (Non-Bayesian)

$$P(\mathbf{x} \mid \mathsf{Play} = Y) = P(O = s \mid Y) P(T = c \mid Y) P(H = h \mid Y) P(W = t \mid Y)$$

$$\approx \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9}$$

$$P(\mathbf{x} \mid \mathsf{Play} = N) = P(O = s \mid N) P(T = c \mid N) P(H = h \mid N) P(W = t \mid N)$$

$$\approx \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5}$$

Exercise: find the odds of play, $P(\text{play} = Y \mid \mathbf{x})/P(\text{play} = N \mid \mathbf{x})$

Inf2b Learning and Data: Lecture 6 Naive Bayes

Naive Bayes properties

Applying the Naive Bayes rule,

Easy and cheap:

Record counts, convert to frequencies, score each class by multiplying prior and likelihood terms

$$P(\mathbf{x}|c_k) \propto \left(\prod_{i=1}^d P(x_i|c_k)\right) P(c_k)$$

Inf2b Learning and Data: Lecture 6 Naive Baye

Statistically viable:

Simple count-based estimates work in 1D

Often overconfident:

Treats dependent evidence as independent

- Baves decision rule review
- 2 The curse of dimensionality
- Naive Bayes
- Text classification using Naive Bayes (introduction)

Identifying Spam

Spam?

I got your contact information from your countrys information directory during my desperate search for someone who can assist me secretly and confidentially in relocating and managing some family fortunes.

Learning and Data: Lecture 6 Naive Baves

f2b Learning and Data: Lecture 6 Naive Ba

nf2b Learning and Data: Lecture 6

ive Bayes

Inf2b Learning and Data: Lecture 6 Naive Bayes

Inf2b Learning and Data: Lecture 6 Naive Bayes 19	Inf2b Learning and Data: Lecture 6 Naive Bayes 20
Text Classification using Bayes Theorem	Summary
 Document D, with class c_k Classify D as the class with the highest posterior probability: P(c_k D) = P(D c_k)P(c_k) / P(D c_k)P(c_k) How do we represent D? How do we estimate P(D c_k)? Bernoulli document model: a document is represented by a binary feature vector, whose elements indicate absence or presence of corresponding word in the document Multinomial document model: a document is represented by an integer feature vector, whose elements indicate frequency of corresponding word in the document 	 The curse of dimensionality Naive Bayes approximation Example: classifying multidimensional data using Naive Bayes Next lecture: Text classification using Naive Bayes

Inf2b Learning and Data: Lecture 6 Naive Bayes