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Today’s Schedule

1 Probability (review)

2 What is Bayes’ theorem for?

3 Statistical classification
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Motivation for probability

In some applications we need to:

Communicate uncertainty

Use prior knowledge

Deal with missing data

(we cannot easily measure similarity)
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1 Probability (review)

2 What is Bayes’ theorem for?

3 Statistical classification
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Warming up

Throwing two dices

Probablity of {1, 1} ?

1

6× 6
=

1

36

Probablity of {2, 5} ?

2

6× 6
=

1

18

Drawing two cards from a deck of cards

Probability of {Club,Spade}?

13× 13× 2

52× 51
=

13

102

Probability of {Club,Club}?

13× 12

52× 51
=

1

17
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Warming up

Probability that a student in Informatics has eyeglasses?

Probability that you live more than 90 years?

When a real dice is thrown, is the probability of getting
{1} 1

6
?

Theoretical probability vs. Empirical probability
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Rules of Probability

Sum Rule:

P(X =xi) =
L∑

j=1

P(X =xi ,Y =yj)

Product Rule:

P(Y =yj ,X =xi) = P(Y =yj |X =xi)P(X =xi)

= P(X =xi |Y =yj)P(Y =yj)

Random variables Events/values

X {x1, x2, . . . , xL}
Y {y1, y2, . . . , yL}
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Rules of Probability

Sum Rule:

P(X ) =
∑

Y

P(X ,Y )

Product Rule:

P(Y ,X ) = P(Y |X )P(X )
= P(X |Y )P(Y )

If X and Y are independent,

P(X |Y ) = P(X )
P(X ,Y ) = P(X )P(Y )
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Example: determinig the sex of fish

Histograms of fish lengths
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Example: determinig the sex of fish

Relative frequencies of fish length
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Example: determinig the sex of fish

Possible decision boundary
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Fish questions

How to classify 4 cm, or 19 cm fish?

How to classify 22 cm fish?

How to classify 10 cm fish?

What if there are 10× more male fish than female?

What if you’re forbidden from catching female fish?
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Fish questions

Relative frequeny of male fish length: P(X = x |C = M)
Relative frequeny of female fish length: P(X = x |C = F)

Given a fish length, x, is it sensible to decide as follows?

male fish if P(x |M) > P(x |F)
female fish if P(x |M) < P(x |F)
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Bayes’ Theorem

P(Y |X ) =
P(X |Y )P(Y )

P(X )

Tohmas Bayes (?) (1701? – 1761)

http://www.york.ac.uk/depts/maths/histstat/bayespic.htm
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‘Bayesian’ philosophy refs

Non-examinable!

Bayes’ paper:
http://www.jstor.org/stable/105741

http://dx.doi.org/10.1093/biomet/45.3-4.296 (re-typeset)

Cox’s paper:
http://dx.doi.org/10.1119/1.1990764

http://dx.doi.org/10.1016/S0888-613X(03)00051-3 modern

commentary

MacKay textbook, amongst many others
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Card prediction

3 cards with coloured faces:

1 one white and one black face

2 two black faces

3 two white faces

I shuffle cards and turn them over randomly. I select a card
and way-up uniformly at random and place it on a table.

Question: You see a white face. What is the probability that
the other side of the same card is black? You see a black
face. What is the probability that the other side of the same
card is white?

A) 1/4 B) 1/3 C) 1/2 D) 2/3 E) 3/4 Z) ?
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Notes on the card prediction problem:

This card problem is Ex. 8.10a), MacKay, p142.
It is not the same as the famous ‘Monty Hall’ puzzle: Ex. 3.8–9 and
http://en.wikipedia.org/wiki/Monty_Hall_problem

The Monty Hall problem is also worth understanding. Although the card
problem is (hopefully) less controversial and more straightforward. The
process by which a card is selected should be clear: P(c) = 1/3 for
c = 1, 2, 3, and the face you see first is chosen at random: e.g.,
P(x1 =B | c =1) = 0.5.
Many people get this puzzle wrong on first viewing (it’s easy to mess
up). If you do get the answer right immediately (are you sure?), this is
will be a simple example on which to demonstrate some formalism.
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How do we solve it formally?

Use Bayes theorem?

P(x2 =W | x1 =B) =
P(x1 =B | x2 =W) P(x2 =W)

P(x1 =B)

The boxed term is no more obvious than the answer!

Bayes theorem is used to ‘invert’ forward generative processes
that we understand.
The first step to solve inference problems is to write down a
model of your data.
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The card game model

Cards: 1) B|W, 2) B|B, 3) W|W

P(c) =

{
1/3 c = 1, 2, 3

0 otherwise.

P(x1 =B | c) =





1/2 c = 1

1 c = 2

0 c = 3

Bayes theorem can ‘invert’ this to tell us P(c | x1 =B);
infer the generative process for the data we have.
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Inferring the card

Cards: 1) B|W, 2) B|B, 3) W|W

P(c | x1 =B) =
P(x1 =B | c)P(c)

P(x1 =B)

∝





1/2 · 1/3 = 1/6 c = 1

1 · 1/3 = 1/3 c = 2

0 c = 3

=

{
1/3 c = 1
2/3 c = 2

Q: “But aren’t there two options given a black face, so it’s 50–50?”

A: There are two options, but the likelihood for one of them is 2× bigger
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Predicting the next outcome

(This slide and the next are not really required for this course.)

For this problem we can spot the answer, for more complex
problems we want a formal means to proceed.
P(x2 | x1 =B)?
Need to introduce c to use expressions we know:

P(x2 | x1 =B) =
∑

c∈1,2,3
P(x2, c | x1 =B)

=
∑

c∈1,2,3
P(x2 | x1 =B, c)P(c | x1 =B)

Predictions we would make if we knew the card, weighted by
the posterior probability of that card. P(x2=W | x1=B) = 1/3
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Strategy for solving any inference and prediction problem:

When interested in something y , we often find we can’t
immediately write down mathematical expressions for P(y | data).
So we introduce stuff, z , that helps us define the problem:

P(y | data) =
∑

z

P(y , z | data)

by using the sum rule. And then split it up:

P(y | data) =
∑

z

P(y | z , data)P(z | data)

using the product rule. If knowing extra stuff z we can predict y ,
we are set: weight all such predictions by the posterior probability
of the stuff (P(z | data), found with Bayes theorem).
Sometimes the extra stuff summarizes everything we need to know
to make a prediction:

P(y | z , data) = P(y | z)

although not in the formulation of the card game above.
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Not convinced?

Not everyone believes the answer to the card game question.
Sometimes probabilities are counter-intuitive. I’d encourage you to write
simulations of these games if you are at all uncertain. Here is an
Octave/Matlab simulator I wrote for the card game question:
cards = [1 1;

0 0;

1 0];

num cards = size(cards, 1);

N = 0; % Number of times first face is black

kk = 0; % Out of those, how many times the other side is white

for trial = 1:1e6

card = ceil(num cards * rand());

face = 1 + (rand < 0.5);

other face = (face==1) + 1;

x1 = cards(card, face);

x2 = cards(card, other face);

if x1 == 0

N = N + 1;

kk = kk + (x2 == 1);

end

end

approx probability = kk / N
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1 Probability (review)

2 What is Bayes’ theorem for?

3 Statistical classification

Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 25

Bayes and pattern recognition

Class C = c1, . . . , cK ; input features X = x

Most probable class: (maximum posterior class)

c∗ = arg max
ck

P(ck | x)

where
posterior︷ ︸︸ ︷
P(ck | x) =

likelihood︷ ︸︸ ︷
P(x | ck)

prior︷ ︸︸ ︷
P(ck)

P(x)

Might also minimize expected loss: (non-examinable)

c∗ = arg min
ck

∑

ct

P(ct | x) L(ck , ct)
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Posterior probability

Can compute denominator with sum rule:

P(x) =
∑

`

P(x | c`)P(c`)

However P(x) is the same for all classes:

P(ck | x) ∝ P(x | ck)P(ck)

Choosing between two classes, only requires the odds,
the ratio of the posterior probabilities.
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Back to the fish

100 example male fish, 100 examples females
Estimating likelihoods as relative frequencies gives:

x P(x |M) P(x |F ) x P(x |M) P(x |F )
4 0.00 0.02 13 0.19 0.02
5 0.01 0.07 14 0.11 0.01
6 0.02 0.08 15 0.06 0.01
7 0.02 0.10 16 0.02 0.01
8 0.02 0.14 17 0.02 0.00
9 0.07 0.21 18 0.01 0.00

10 0.08 0.19 19 0.01 0.00
11 0.14 0.10 20 0.00 0.00
12 0.22 0.04
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Marginal probabilities

P(x) =
∑

C∈{M,F}
P(x |C )P(C )

Requires prior probabilities: P(C =M), P(C =F )

If P(C =M) = P(C =F ) = 0.5: P(x =6) = 0.05
(Males and females equally common)

If P(C =M) = 0.8: P(x =6) = 0.024
(P(C =F ) must be 0.2; 4× more males than females)
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Inferring labels for x =11

Equal prior probabilities: classify it as male:

P(M | x)

P(F | x)
=

P(x |M)P(M)

P(x |F )P(F )
=

0.14 · 0.5
0.10 · 0.5 = 1.4

Twice as many females as males: (i.e., P(M) = 1/3, P(F ) = 2/3)

P(M | x)

P(F | x)
=

P(x |M)P(M)

P(x |F )P(F )
=

0.14 · 1/3

0.10 · 2/3
= 0.7

Classify it as female
M:F is 0.7:1, that is, P(M | x) = 0.7/(0.7 + 1) ≈ 0.41

Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 30

Some more questions

Assume P(M) = P(F ) = 0.5

1 What is the value of P(M |X =4)?

2 What is the value of P(F |X =18)?

3 You observe data point x =20.
To which class should it be assigned?
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Work through the notes!

Remember to review the notes. . .
. . . work through the fruit box example

Similar material in this online text:
http://www.greenteapress.com/thinkbayes/html/thinkbayes002.html
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