
	Today's Schedule	Motivation for probability
Inf2b Learning and Data Lecture 5: Introduction to statistical pattern recognition Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals) Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh Jan-Mar 2014	 Probability (review) What is Bayes' theorem for? Statistical classification 	In some applications we need to: • Communicate uncertainty • Use prior knowledge • Deal with missing data (we cannot easily measure similarity)
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 1	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 2	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 3
	Warming up	Warming up
 Probability (review) What is Bayes' theorem for? Statistical classification 	 Throwing two dices Probability of {1,1} ? Probability of {2,5} ? Drawing two cards from a deck of cards Probability of {Club, Spade}? Probability of {Club, Club}? 	 Probability that a student in Informatics has eyeglasses? Probability that you live more than 90 years? When a real dice is thrown, is the probability of getting {1} ¹/₆? Theoretical probability vs. Empirical probability
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 4	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 5	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 6
Rules of Probability	Rules of Probability	Example: determinig the sex of fish
Sum Rule: $P(X=x_i) = \sum_{j=1}^{L} P(X=x_i, Y=y_j)$ Product Rule: $P(Y=y_j, X=x_i) = P(Y=y_j X=x_i) P(X=x_i)$ $= P(X=x_i Y=y_j) P(Y=y_j)$ $\frac{\overline{\text{Random variables } Events/values}}{X \{x_1, x_2, \dots, x_L\}}$	Sum Rule: $P(X) = \sum_{Y} P(X, Y)$ Product Rule: P(Y, X) = P(Y X) P(X) $= P(X Y) P(Y)$ If X and Y are independent, P(X Y) = P(X) $P(X, Y) = P(X)P(Y)$	Histograms of fish lengths Lengths of male fish 40 0 0 5 Length / cm Length of fish lengths 10 15 20 Length / cm 15 20 20 10 15 20 20 10 15 20 20 10 15 20 20 10 15 20 20 10 15 20
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 7	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 8	Length / cm

How do we solve it formally?	The card game model	Inferring the card
Use Bayes theorem? $P(x_2 = W \mid x_1 = B) = \frac{P(x_1 = B \mid x_2 = W)}{P(x_1 = B)}P(x_2 = W)$ The boxed term is no more obvious than the answer! Bayes theorem is used to 'invert' forward generative processes that we understand. The first step to solve inference problems is to write down a model of your data.	Cards: 1) $\mathbb{B} \mathbb{W}$, 2) $\mathbb{B} \mathbb{B}$, 3) $\mathbb{W} \mathbb{W}$ $P(c) = \begin{cases} 1/3 & c = 1, 2, 3\\ 0 & \text{otherwise.} \end{cases}$ $P(x_1 = \mathbb{B} \mid c) = \begin{cases} 1/2 & c = 1\\ 1 & c = 2\\ 0 & c = 3 \end{cases}$ Bayes theorem can 'invert' this to tell us $P(c \mid x_1 = \mathbb{B})$; infer the generative process for the data we have.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 19	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 20	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 21
Predicting the next outcome	Strategy for solving any inference and prediction problem:	Not convinced?
(This slide and the next are not really required for this course.) For this problem we can spot the answer, for more complex problems we want a formal means to proceed. $P(x_2 x_1 = B)$? Need to introduce c to use expressions we know: $P(x_2 x_1 = B) = \sum_{c \in 1, 2, 3} P(x_2, c x_1 = B)$ $= \sum_{c \in 1, 2, 3} P(x_2 x_1 = B, c) P(c x_1 = B)$ Predictions we would make if we knew the card, weighted by the posterior probability of that card. $P(x_2 = w x_1 = B) = \frac{1}{2}$	When interested in something y, we often find we can't immediately write down mathematical expressions for $P(y data)$. So we introduce stuff, z, that helps us define the problem: $P(y data) = \sum_{z} P(y, z data)$ by using the sum rule. And then split it up: $P(y data) = \sum_{z} P(y z, data) P(z data)$ using the product rule. If knowing extra stuff z we can predict y, we are set: weight all such predictions by the posterior probability of the stuff ($P(z data)$, found with Bayes theorem). Sometimes the extra stuff summarizes everything we need to know to make a prediction: P(y z, data) = P(y z) although not in the formulation of the card game above. MT2b Learning and Data: Letters 1 Introduction to statistical pattern recognition 23	<pre>Not everyone believes the answer to the card game question. Sometimes probabilities are counter-intuitive. I'd encourage you to write simulations of these games if you are at all uncertain. Here is an Octave/Matlab simulator I wrote for the card game question: cards = [1 1; 0 0; 10]; num.cards = size(cards, 1); N = 0; % Number of times first face is black kk = 0; % Out of those, how many times the other side is white for trial = 1:166 card = coil(num.cards * rand()); face = 1 + (rand < 0.6); other_face = (face=1) + 1; x = cards(card, face); if xt == 0</pre>
	Bayes and pattern recognition	Posterior probability
 Probability (review) What is Bayes' theorem for? 	Class $C = c_1, \ldots, c_K$; input features $X = \mathbf{x}$ Most probable class: (maximum posterior class) $c^* = \arg \max_{c_k} P(c_k \mathbf{x})$ where likelihood prior	Can compute denominator with sum rule: $P(\mathbf{x}) = \sum_{\ell} P(\mathbf{x} \mid c_{\ell}) P(c_{\ell})$
Statistical classification	$\overline{P(c_k \mid \mathbf{x})} = \frac{\overline{P(\mathbf{x} \mid c_k)} \ \overline{P(c_k)}}{P(\mathbf{x})}$	However $P(\mathbf{x})$ is the same for all classes: $P(c_k \mathbf{x}) \propto P(\mathbf{x} c_k) P(c_k)$
	Might also minimize expected loss: (non-examinable) $c^* = \arg\min_{c_k} \sum_{c_t} P(c_t \mid \mathbf{x}) L(c_k, c_t)$	Choosing between two classes, only requires the <i>odds</i> , the ratio of the posterior probabilities.
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 25	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 26	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 27

Back to the fish	Marginal probabilities	Inferring labels for $x = 11$
100 example male fish, 100 examples females Estimating likelihoods as relative frequencies gives: $\overline{x P(x \mid M) P(x \mid F) x P(x \mid M) P(x \mid F)}$ $\overline{4 0.00 0.02 13 0.19 0.02}$ $5 0.01 0.07 14 0.11 0.01$ $6 0.02 0.08 15 0.06 0.01$ $7 0.02 0.10 16 0.02 0.01$ $8 0.02 0.14 17 0.02 0.00$ $9 0.07 0.21 18 0.01 0.00$ $10 0.08 0.19 19 0.01 0.00$ $11 0.14 0.10 20 0.00 0.00$	$P(x) = \sum_{C \in \{M,F\}} P(x \mid C) P(C)$ Requires prior probabilities: $P(C = M)$, $P(C = F)$ If $P(C = M) = P(C = F) = 0.5$: $P(x = 6) = 0.05$ (Males and females equally common) If $P(C = M) = 0.8$: $P(x = 6) = 0.024$ ($P(C = F)$ must be 0.2; $4 \times$ more males than females)	Equal prior probabilities: classify it as male: $\frac{P(M \mid x)}{P(F \mid x)} = \frac{P(x \mid M) P(M)}{P(x \mid F) P(F)} = \frac{0.14 \cdot 0.5}{0.10 \cdot 0.5} = 1.4$ Twice as many females as males: (i.e., $P(M) = 1/3$, $P(F) = 2/3$) $\frac{P(M \mid x)}{P(F \mid x)} = \frac{P(x \mid M) P(M)}{P(x \mid F) P(F)} = \frac{0.14 \cdot 1/3}{0.10 \cdot 2/3} = 0.7$ Classify it as female M:F is 0.7:1, that is, $P(M \mid x) = 0.7/(0.7 + 1) \approx 0.41$
Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 28 Some more questions	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 29 Work through the notes!	Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition
Assume $P(M) = P(F) = 0.5$ • What is the value of $P(M X = 4)$? • What is the value of $P(F X = 18)$? • You observe data point $x = 20$. To which class should it be assigned?	Remember to review the notes	
	Similar material in this online text: http://www.greenteapress.com/thinkbayes/html/thinkbayes002.html	

Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition 32

Inf2b Learning and Data: Lecture 5 Introduction to statistical pattern recognition

31