Inf2b Learning and Data

Lecture 2: Similarity and Reocommendation systems

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Recommender systems

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

The Shangri-la Diet (Paperback) by Seth Roberts Derivativ... (Paperback) by M. ***** (3) £5.81 Fix this recommendation

C++ Design Patterns and

S. Joshi ##### (7) £22.78 Fix this recommendation

What the Dog Saw: and other... (Paperback) by Malcolm Gladwell ******* (17) £5.00 Fix this recommendation

Garden State [DVD] [2004] DVD ~ Zach Braff 4444 (98) f3 99 Fix this recommendation

R in a Nutshell (In a Nutshell (... (Paperback) by Joseph Adler £20.40 Fix this recommendation

Protector C Large 5 Litre All Insects... ALL ITEMS SENT IN DISCREET PACKAGING ***** (8) £49.99 £29.99 Fix this recommendation

What makes recommendations good?

The Netflix million dollar prize

- C = 480, 189 users/critics
- M = 17,770 movies

 $C \times M$ matrix of ratings $\in \{1, 2, 3, 4, 5\}$

(ordinal values)

Full matrix \sim 10 billion cells \sim 1% cells filled (100,480,507 ratings available)

Also available: dates of ratings; possibly movie information We'll start with a smaller, simpler setup.

- Oistances between entities
- ② Similarity and recommendations
- In Normalization, Pearson Correlation

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.

Films

Which films do you want to see?

The Films in 2008

The Critics

David Denby Todd McCarthy Joe Morgenstern

Claudia Puig

Peter Travers

Kenneth Turan

The Data

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8

Notations:

source code	slides			
x(c,m)	$x_m^{(c)}, \operatorname{sc}_c(m)$			
	$\mathbf{x}^{(c)} = (x_1^{(c)}, \dots, x_M^{(c)})$			
c: critic. <i>m</i> : movie				

A two-dimensional review space

Inf2b Learning and Data: Lecture 2 Similarity and Reocommendation systems

Euclidean distance

Distance between 2D vectors: $\mathbf{a} = (x, y)$ and $\mathbf{b} = (x', y')$

$$r_2(\mathbf{a},\mathbf{b}) = \sqrt{(x-x')^2 + (y-y')^2}$$

Distance between *D*-dimensional vectors: \mathbf{x} and \mathbf{x}'

$$r_2(\mathbf{x},\mathbf{x}') = \sqrt{\sum_{d=1}^{D} (x_d - x_d')^2}$$

Measures similarities between feature vectors i.e., similarities between digits, critics, movies, genes, ... NB: $r_2()$ denotes "2-norm", c.f. *p*-norm or L^p -norm.

	Denby	McCarthy	M'stern	Puig	Travers	Turan
Denby		7.7	10.6	6.2	5.2	7.9
McCarthy	7.7		5.0	4.4	7.2	3.9
M'stern	10.6	5.0		7.5	10.7	6.8
Puig	6.2	4.4	7.5		3.9	3.2
Travers	5.2	7.2	10.7	3.9		5.6
Turan	7.9	3.9	6.8	3.2	5.6	

NB: Distances measured in a 6-dimensional space

The closest pair is Puig and Turan

Transposed problem

Customers Who Bought This Item Also Bought

Mobius Dick by Andrew Crumey

The Girl with the Dragon Tattoo by Stieg Larsson

Netherland by Joseph O'Neill

Page 1 of 16

The Secret Scripture by Sebastian Barry

Child 44 by Tom Rob Smith

Once Upon a Time in the North by Philip Pullman

Inf2b Learning and Data: Lecture 2 Similarity and Reocommendation systems

Distance between Movies

		Body of	Burn			Rev
	Australia	Lies	After	Hancock	Milk	Road
Australia		5.8	5.3	10.9	8.9	7.2
Body of Lies	5.8		3.7	6.6	5.9	4.0
Burn After	5.3	3.7		8.9	7.0	4.5
Hancock	10.9	6.6	8.9		10.9	8.4
Milk	8.9	5.9	7.0	10.9		4.8
Rev. Road	7.2	4.0	4.5	8.4	4.8	

Run the same code for distance between critics, simply transpose the data matrix first

Transpose of data in numpy is data.T, in Matlab/Octave it's data'

2 Similarity and recommendations

3 Normalization, Pearson Correlation

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.

	Body of Lies	Burn After Reading	Rev. Road	Australia	Hancock	Milk
Austra						
User2	6	9	6	?	?	?

Now measuring distances in 3D:

Critic	<i>r</i> ₂ (critic, user2)
Denby	$\sqrt{27} = 5.2$
McCarthy	$\sqrt{21} = 4.6$
Morgenstern	$\sqrt{21} = 4.6$
Puig	$\sqrt{5} = 2.2$
Travers	$\sqrt{14} = 3.7$
Turan	$\sqrt{6} = 2.4$

 \Rightarrow User 2 seems most similar to Claudia Puig

Recommendation strategies

How to predict $sc_u(z)$?

— the recommendation score of film z to User u

- Option 1 Find the closest critic, c*, to User2.
 Use sc_{c*}(z).
- Option 2 Consider not only the closest critic but also all the critics,
 - weighting the critic's film scores according to the similarity between the critic and user.

 $sim(\mathbf{x}^{(u)}, \mathbf{x}^{(c)}) \cdot sc_c(z), \quad c = 1, \dots, C$

 \Rightarrow "Weighted average"

Option n?

Weighted averages

Weighted average for user *u*, based on *similarity to critics*:

$$\operatorname{sc}_{u}(z) = \frac{1}{\sum_{c=1}^{C} \operatorname{sim}(\mathbf{x}^{(u)}, \mathbf{x}^{(c)})} \sum_{c=1}^{C} \operatorname{sim}(\mathbf{x}^{(u)}, \mathbf{x}^{(c)}) \cdot \operatorname{sc}_{c}(z)$$

The normalization outside each sum, means that if every critic has the same score, the (weighted) average will report the mean or average of critic scores for movie *z*:

$$\frac{1}{C}\sum_{c=1}^{C}\operatorname{sc}_{c}(z)$$

Simple recommender system

Predicted score: average critic score weighted by similarity

Similarity measures: There's a choice. For example:

$$\sin(\mathbf{x},\mathbf{y}) = \frac{1}{1+r_2(\mathbf{x},\mathbf{y})}$$

Can now predict scores for User 2 (see notes)

Good measure?

- Consider distances 0, ∞ , and in between.
- What if not all critics have seen the same movies?
- What if some critics rate more highly than others?
- What if some critics have a wider spread than others?

2 Similarity and recommendations

Ormalization, Pearson Correlation

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.

Normalization

Mean and standard deviation of critic c's scores:

$$\mu^{(c)} = rac{1}{M} \sum_{m=1}^{M} x_m^{(c)}; \qquad \sigma^{(c)} = \sqrt{rac{1}{M-1} \sum_{m=1}^{M} \left(x_m^{(c)} - \mu^{(c)}
ight)^2}$$

Different means and spreads make reviewers look different \Rightarrow Create 'standard score' with mean zero and st. dev. 1

Standardized score:

$$z_m^{(c)} = \frac{x_m^{(c)} - \mu^{(c)}}{\sigma^{(c)}}$$

Many learning systems work better with standardized features/outputs

Pearson correlation

Estimate of 'correlation' between critics *c* and *d*:

$$\begin{split} \rho(c,d) &= \frac{1}{M-1} \sum_{m=1}^{M} z_m^{(c)} \, z_m^{(d)} \\ &= \frac{1}{M-1} \sum_{m=1}^{M} \frac{(x_m^{(c)} - \mu^{(c)})}{\sigma^{(c)}} \frac{(x_m^{(d)} - \mu^{(d)})}{\sigma^{(d)}}. \end{split}$$

Tends to one value as $M \to \infty$ Based on standard scores

(a shift and stretch of a reviewer's scale makes no difference)

Used in the mix by the winning netflix teams: http://www2.research.att.com/~volinsky/netflix/Bellkor2008.pdf

- Rating prediction: fill in entries of a $C \times M$ matrix
- a row is a feature vector of a critic
- guess cells based on weighted average of similar rows
- similarity based on distance and Pearson correlation
- could transpose matrix and run same code!

NumPy programming example

```
from numpy import *
```

```
c_scores = array([
    [3, 7, 4, 9, 9, 7],
    [7, 5, 5, 3, 8, 8],
    [7, 5, 5, 0, 8, 4],
    [5, 6, 8, 5, 9, 8],
    [5, 8, 8, 8, 10, 9],
    [7, 7, 8, 4, 7, 8]]) # C,M
u2\_scores = array([6, 9, 6])
u2_movies = array([1, 2, 5]) # zero-based indices
r2 = sqrt(sum((c_scores[:,u2_movies] - u2_scores)**2, 1).T) # C,
sim = 1/(1 + r2) \# C,
pred_scores = dot(sim, c_scores) / sum(sim)
print(pred_scores)
```

The predicted scores has predictions for all movies, # including ones where we know the true rating from u2.

Matlab/Octave version

```
c_scores = [
   3749 97;
   7553 88;
   7550 84;
   5685 98:
   5 8 8 8 10 9;
   7 7 8 4 7 8]; % CxM
u2\_scores = [6 \ 9 \ 6];
u2_movies = [2 3 6]; % one-based indices
% The next line is complicated. See also next slide:
d2 = sum(bsxfun(@minus, c_scores(:,u2_movies), u2_scores).^2, 2)';
r2 = sqrt(d2);
sim = 1./(1 + r2); % 1xC
pred_scores = (sim * c_scores) / sum(sim) % 1xM = 1xC * CxM
```

Matlab/Octave square distances

Other ways to get square distances:

% The next line is like the Python, but not valid Matlab. % Works in recent builds of Octave. d2 = sum((c_scores(:,u2_movies) - u2_scores).^2, 2)';

% Sq. distance is common; I have a general routine at: % homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_dist.m d2 = square_dist(u2_scores', c_scores(:,u2_movies)');

Or you could write a for loop and do it as you might in Java. Worth doing to check your code.