Inf2b Learning and Data

Lecture 1: Introcution to Learning and Data

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

Jan-Mar 2014

Welcome to Inf2b!

Today's Schedule:

- Course structure
- What is (machine) learning? (and why should you care?)

- Administrative stuff
 - How to do well
- Setting up a learning problem

(time allowing)

Website:

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Constituents:

Course structure

- 30 lectures (including review)
- Tutorials starting in week 2
- 2 assessed assignments

Equal split into two threads:

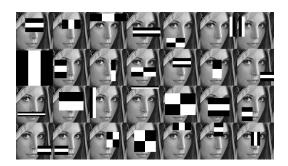
- Algorithms and Data Structures KK (Kyriakos Kalorkoti)
- Learning and Data Hiroshi

Course structure

- What is machine learning
- Administrative stuff
- Setting up a learning problem

Face detection

How would you detect a face?



How does album software tag your friends?

http://demo.pittpatt.com/

Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data

Viola-Jones Face detection (2001)

Taken from: http://ahprojects.com/projects/cv-dazzle A nice demo: http://vimeo.com/12774628

Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data

A neat algorithm & data structure

Hiding from the machines

naively need to add 10^3 to 10^6 pixels Rectangle intensity:

Pre-computation: Integral Image,

add/subtract 4 values ⇒ rectangle intensity

http://en.wikipedia.org/wiki/Summed_area_table

Taken from: http://ahprojects.com/projects/cv-dazzle

How does human vision work?

Intro summary	Applications of machine learning	
 Fit numbers in a program to data More robust than hand-fitted rules Can't approach humans at some tasks (e.g., vision) Machines make better predictions in many other cases 	Within informatics: • Vision: as we've seen	① Course structure
	 Graphics: increasingly data driven Natural Language Processing (NLP): text search/summarisation, speech recognition/synthesis 	② What is machine learning
	 Robotics: vision, planning, control, Compilers: learning how to optimise and beyond: data analysis across the sciences 	Administrative stuff
	Every day: • Adverts / recommendations all over the web ··· Big Data • Discounts in Tescos http://www.mathworks.co.uk/discovery/big-data-matlab.html • Speech recognition, Machine Translation, with self-driving cars 'soon'?	Setting up a learning problem
Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 10	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 11	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 12
Private study	Class rens	Two hours study this week?

Private study	Class reps	Two hours study this week?
~2 hours private study per lecture, in addition to tutorials & assignments! No required textbook for Inf2b There are notes. See those for recommended books.	WANTED: Inf2b class reps (for ADS and & learning) Email: h.shimodaira@ed.ac.uk your name, degree, email address.	Start to familiarise yourself with MATLAB (or OCTAVE) Introductory worksheet on the course website Many others at the end of a web search Love Python? Learn NUMPY+SCIPY+MATPLOTLIB (instead, or as well)
Come to lectures! (really, skipping lectures is a bad idea)		Vital skills: add, average, multiply vectors and matrices plot data stored in vectors save/read data to/from files
Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 13	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 14	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data
	The Netflix Prize	Kaggle

	The Netflix Prize	Kaggle
 Course structure What is machine learning Administrative stuff Setting up a learning problem 	The Netflix Prize sought to substantially improve the accuracy of predictions about how much someone is going to enjoy a movie based on their movie preferences. "We're quite curious, really. To the tune of one million dollars. It's "easy" really. We provide you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than what Cinematch can do on the same training data set." http://www.netflixprize.com, October 2006.	Crowd-sourcing data-science solutions: http://kaggle.com/
Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 16	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 17	Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data 18

Creating training data

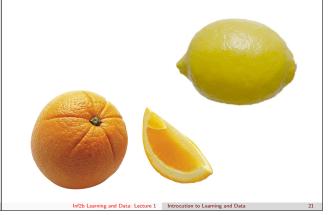
Summary of problem setting-up

Oranges and Lemons

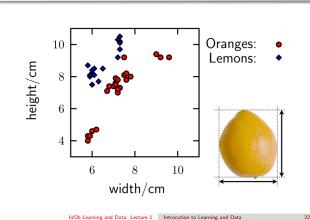
Microsoft Kinect (Shotton et al., CVPR 2011)

http://research.microsoft.com/apps/pubs/default.aspx?id=145347

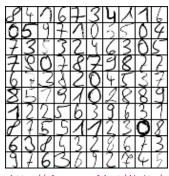
Random forest applied to fantasies


Each challenge has:

- A measure of success Objective function, cost function,
- Data is useful (but needs to be available)
- Nothing is certain


we will use probability a lot

How does a machine use the data?


Inf2b Learning and Data: Lecture 1 Introcution to Learning and Data

A two-dimensional space

Handwritten digits

http://alex.seewald.at/digits/

A 64-dimensional space

Turn each cell into a number (somehow, see notes) Unravel into a column vector, a feature vector \Rightarrow represented digit as point in 64D

http://alex.seewald.at/digits/

Euclidean distance

Distance between 2D vectors: (x, y) and (x', y')

$$r_2 = \sqrt{(x - x')^2 + (y - y')^2}$$

Distance between D-dimensional vectors: \mathbf{x} and \mathbf{x}'

$$r_2(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{d=1}^{D} (x_d - x_d')^2}$$

Measures similarities between feature vectors

i.e., similarities between digits, movies, sounds, galaxies, ...

Question

Have high-resolution scans of digits.

How many pixels should be sample?

What are pros and cons of:

 2×2 , 4×4 , 16×16 , or 100×100 ?