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How to stay on the road?

Self-driving car in the desert:
— You can't trust GPS+map
— Laser range finders can get confused or go off-line
— You have a camera, but. . .
— Off-road in place A looks like on-road in place B

http://robots.stanford.edu/talks/stanley/


http://robots.stanford.edu/talks/stanley/

Today’s Schedule:

— Collaborative counting (review)
— Clustering
— How to stay on the road (time allowing)



Review: the confection

m&m’s Jelly Belly Chocolate Raisins
(185g) (100g) (200g)



The importance of guessing

http://StreetFightingMath. co



http://StreetFightingMath.com/
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A 2D space
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For 3D and more, check out the code on the website.




Often log-transform —+ve data

std("texture")
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On taking logs
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SCENCE TiP: LOG SCALES ARE FOR QUITTERS WHO CANT
FIND ENOUGH PAPER TOMAKE THEIR POINT ARORESLY

http://xkcd.com/1162/


http://xkcd.com/1162/

Count guesses on log-scale
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Were some people just lucky?



Ranking by past performance
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Today’s Schedule:

— Collaborative counting (review)
— Clustering
— How to stay on the road (time allowing)



A two-dimensional space
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Supervised learning
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The Unsupervised data
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Manderins
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Navel oranges
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Spanish jumbo oranges
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Belsan lemons
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Some other lemons
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“Seconds” Oranges
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Clustering

“Human brains are good at finding regularities in data.
One way of expressing regularity is to put a set of
objects into groups that are similar to each other. For
example, biologists have found that most objects in the
natural world fall into one of two categories: things
that are brown and run away, and things that are green
and don't run away. The first group they call animals,
and the second, plants.”

Recommended reading: David MacKay textbook, p284—
http://www.inference.phy.cam.ac.uk/mackay/itila/


http://www.inference.phy.cam.ac.uk/mackay/itila/

K -means clustering

A simple algorithm to find clusters:

1. Pick K random points as cluster center positions
2. Assign each point to its nearest center”
3. Move each center to mean of its assigned points

4. |f centers moved, goto 2.

* In the unlikely event of a tie, break tie in some way.
For example, assign to the center with smallest index in memory.



K -means clustering
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K -means clustering
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K-means clustering
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K-means clustering
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K-means clustering
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K-means clustering
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K -means clustering
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K -means clustering
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K -means clustering
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K -means clustering
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Theory of K-means

If assighments don't change, algorithm terminates.

Can assignments cycle, never terminating?

Convergence proof technique: find a Lyapunov
function L, that is bounded below and cannot increase.

L = sum of square distances between points and centers

K-means is an optimization algorithm for L.
Local optima are found. Running multiple times and using
solution with best £ is common.



Today’s Schedule:

— Collaborative counting (review)
— Clustering
— How to stay on the road ........



Stanley

Stanford Raing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/


http://robots.stanford.edu/talks/stanley/

Inside Stanley
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Stanley figures from Thrun et al., J. Field Robotics 23(9):661, 2006.



Perception and intelligence

(&) Beer Bottle Pass (b) Map and GPS corridor

It would look pretty stupid to run off the road,
just because the trip planner said so.



How to stay on the road?

Classifying road seems hard. Colours and textures change:
road appearance in one place may match ditches elsewhere.



Clustering to stay on the road

Stanley used a Gaussian mixture model. “Souped up K-means.”
The cluster just in front is road (unless we already failed).



Failures of K-means
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Large clouds pull small clusters off-center



Failures of K-means
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Distance needs to be measured sensibly.



Summary

‘Collaborative filtering’
|deas are broadly applicable. Be creative!

Clustering
K-means for minimizing ‘cluster variance’
Review notes, not just slides

lother methods exist: hierarchical, top-down and bottom-up]

Unsupervised learning
Spot structure in unlabelled data
Combine with knowledge of task



MiXtU re mOde”ing (non-examinable)

The fix: clusters have shapes as well as centers:

S T AT 8 wS

Assume each point is from one of K Gaussian distributions

Just like K-means, but:
Assign points to Gaussian assigning highest probability.

Update cluster with mean and variance of points it owns.

Fancier (usual) version: points have soft assignments in proportion to

their probability under each cluster.



Soft assignments

Each cluster k € {1... K} has fitted a model P(x|c=k).




Theory of mixture modelling

e The model is called a mixture of Gaussians
e The algorithm is called EM (Expectation Maximization) *
e EM maximizes P(data |fitted model)

e Does EM converge?

* EM is a general method to maximize likelihoods of probabilistic models with latent variables, e.g. cluster assignments.



Fixing previous problems
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The clustering on the right has much higher probability
than the K-means solution on the left.



