Inf2b Learning and Data

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Lecture 1
Introduction to Learning and Data

Iain Murray, 2013
School of Informatics, University of Edinburgh

Welcome to Inf2b!

Today's Schedule:

- What is learning? (and why should you care?)
- Administrative stuff
- How to do well
- Setting up a learning problem
(time allowing)

Face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?

Viola-Jones Face detection

Taken from: http://v10.ahprojects.com/art/cv-dazzle

A neat algorithm \& data structure

Rectangle intensity:

 naively need to add 10^{3} to 10^{6} pixelsPre-computation: Integral Image,
add/subtract 4 values \Rightarrow rectangle intensity
http://en.wikipedia.org/wiki/Summed_area_table

Hiding from the machines

Taken from: http://v10.ahprojects.com/art/cv-dazzle

How does human vision work?

http://brain.mada.org.il/upside-down-e.html

Intro summary

Machine learning:

- Fit numbers in a program to data
- More robust than hand-fitted rules
- Can't approach humans at some tasks (e.g., vision)
- Machines make better predictions in many other cases

Applications of machine learning

Within informatics

- Vision as we've seen
- Graphics increasingly data driven
- Robotics vision, planning, control, . . .
- Compilers learning how to optimize
and beyond: data analysis across the sciences

Every day

- Adverts / recommendations all over the web
- Discounts in Tescos
- Speech recognition, Machine Translation, . . . with self-driving cars 'soon'?

Welcome to Inf2b!

Today's Schedule:

- What is learning? (and why should you care?)
- Administrative stuff
- How to do well
- Setting up a learning problem
(time allowing)

Course structure

Website:
http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Constituents:

- 30 lectures (including review)
- Tutorials starting in week 2
- 2 assessed assignments

Equal split into two threads:

- Algorithms \& Data Structures - KK (Kyriakos Kalorkoti)
- Learning and Data - lain

Private study

~2 hours private study per lecture,
in addition to tutorials \& assignments!

No required textbook for Inf2b
There are notes. See those for recommended books.

Come to lectures! (really, skipping lectures is a bad idea)

Feedback:
ask questions, use tutorials, NB (for learning only), class reps

Class reps

Wanted: Inf2b class reps (for ADS \& learning)

Email: i.murray@ed.ac.uk
your name, degree, email address.

Two hours study this week?

Start to familiarize yourself with Matlab (or Octave)
Introductory worksheet on the course website
Many others at the end of a web search

Love Python? Learn NumPy+SciPy+Matplotlib
(instead, or as well)

Vital skills:

- add, average, multiply vectors and matrices
- plot data stored in vectors
- save/read data to/from files

Welcome to Inf2b!

Today's Schedule:

- What is learning? (and why should you care?)
- Administrative stuff
- How to do well
- Setting up a learning problem
(time allowing)

The Netflix Prize

"We're quite curious, really. To the tune of one million dollars.

It's "easy" really. We provide you with a lot of anonymous rating data, and a prediction accuracy bar that is 10\% better than what Cinematch can do on the same training data set."
http://www.netflixprize.com, October 2006.

Kaggle

Crowd-sourcing data-science solutions:

 http://kaggle.com/
Creating training data

Microsoft Kinect
 (Shotton et al., CVPR 2011)

 http://research.microsoft.com/apps/pubs/default.aspx?id=145347

Random forest applied to fantasies

Summary of setting

Each challenge has:

- A measure of success

Objective function, cost function, metric, ...

- Data is useful (but needs to be available)
- Nothing is certain
we will use probability a lot

How does a machine use the data?

Oranges and Lemons

A two-dimensional space

Handwritten digits

http://alex.seewald.at/digits/

A 64-dimensional space

Turn each cell into a number (somehow, see notes)
Unravel into a column vector, a feature vector \Rightarrow represented digit as point in $64 D$
http://alex.seewald.at/digits/

Euclidean distance

Distance between $2 D$ vectors: (x, y) and $\left(x^{\prime}, y^{\prime}\right)$

$$
r_{2}=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}}
$$

Distance between D-dimensional vectors: \mathbf{x} and \mathbf{x}^{\prime}

$$
r_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sqrt{\sum_{d=1}^{D}\left(x_{d}-x_{d}^{\prime}\right)^{2}}
$$

Measures similarities between feature vectors
i.e., similarities between digits, movies, sounds, galaxies,

Question

 Have high-resolution scans of digits. How many pixels should be sample? What are pros and cons of: $2 \times 2,4 \times 4, \quad 16 \times 16$, or $100 \times 100 ?$