Inf2b Learning and Data

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Lecture 1 Introduction to Learning and Data

lain Murray, 2013

School of Informatics, University of Edinburgh

Welcome to Inf2b!

Today's Schedule:

- What is learning? (and why should you care?)
- Administrative stuff
 - How to do well
- Setting up a learning problem

(time allowing)

Face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?

http://demo.pittpatt.com/

Viola–Jones Face detection

Taken from: http://v10.ahprojects.com/art/cv-dazzle

A neat algorithm & data structure

Rectangle intensity:

naively need to add 10^3 to 10^6 pixels

Pre-computation: Integral Image, add/subtract 4 values \Rightarrow rectangle intensity

http://en.wikipedia.org/wiki/Summed_area_table

Hiding from the machines

Taken from: http://v10.ahprojects.com/art/cv-dazzle

How does human vision work?

http://brain.mada.org.il/upside-down-e.html

Intro summary

Machine learning:

- Fit numbers in a program to data
- More robust than hand-fitted rules
- Can't approach humans at some tasks (e.g., vision)
- Machines make better predictions in many other cases

Applications of machine learning

Within informatics

- Vision as we've seen
- Graphics increasingly data driven
- Robotics vision, planning, control, . . .
- Compilers learning how to optimize

and beyond: data analysis across the sciences

Every day

- Adverts / recommendations all over the web
- Discounts in Tescos

— Speech recognition, Machine Translation, . . .

with self-driving cars 'soon'?

Welcome to Inf2b!

Today's Schedule:

— Administrative stuff

- How to do well
- Setting up a learning problem

(time allowing)

Course structure

Website:

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Constituents:

- 30 lectures (including review)
- Tutorials starting in week 2
- 2 assessed assignments

Equal split into two threads:

- Algorithms & Data Structures KK (Kyriakos Kalorkoti)
- Learning and Data Iain

Private study

${\sim}2$ hours private study per lecture,

in addition to tutorials & assignments!

No required textbook for Inf2b

There are notes. See those for recommended books.

Come to lectures! (really, skipping lectures is a *bad* idea)

Feedback:

ask questions, use tutorials, NB (for learning only), class reps

WANTED: Inf2b class reps (for ADS & learning)

Email: i.murray@ed.ac.uk your name, degree, email address.

Two hours study this week?

Start to familiarize yourself with MATLAB (or OCTAVE)

Introductory worksheet on the course website

Many others at the end of a web search

Love Python? Learn NUMPY+SCIPY+MATPLOTLIB (instead, or as well)

Vital skills:

- add, average, multiply vectors and matrices
- plot data stored in vectors
- save/read data to/from files

Welcome to Inf2b!

Today's Schedule:

- Administrative stuff
 - How to do well
- Setting up a learning problem

(time allowing)

The Netflix Prize

"We're quite curious, really. To the tune of one million dollars."

It's "easy" really. We provide you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than what Cinematch can do on the same training data set."

http://www.netflixprize.com, October 2006.

Crowd-sourcing data-science solutions:

http://kaggle.com/

Creating training data

Microsoft Kinect (Shotton et al., CVPR 2011)

http://research.microsoft.com/apps/pubs/default.aspx?id=145347

Random forest applied to fantasies

Summary of setting

Each challenge has:

— A measure of success

Objective function, cost function, metric, . . .

- Data is useful (but needs to be available)
- Nothing is certain

we will use probability a lot

How does a machine use the data?

Oranges and Lemons

A two-dimensional space

Handwritten digits

http://alex.seewald.at/digits/

A 64-dimensional space

Turn each cell into a number (somehow, see notes) Unravel into a column vector, a **feature vector** \Rightarrow represented digit as point in 64D

http://alex.seewald.at/digits/

Euclidean distance

Distance between 2D vectors: (x, y) and (x', y')

$$r_2 = \sqrt{(x - x')^2 + (y - y')^2}$$

Distance between D-dimensional vectors: \mathbf{x} and \mathbf{x}'

$$r_2(\mathbf{x}, \mathbf{x}') = \sqrt{\sum_{d=1}^{D} (x_d - x'_d)^2}$$

Measures similarities between feature vectors

i.e., similarities between digits, movies, sounds, galaxies, . . .

Have high-resolution scans of digits.

How many pixels should be sample?

What are pros and cons of: 2×2 , 4×4 , 16×16 , or 100×100 ?