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Overview

Today's lecture

Gaussians
@ The multidimensional Gaussian distribution
@ Bayes theorem and probability density functions

@ The Gaussian classifier
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(One-dimensional) Gaussian distribution

One-dimensional Gaussian with zero mean and unit variance

(p=0, 0% =1):
QU.IS
9% FR— 1 o 1 2 3 )
2
Pl %) = N(xin, %) = L exp ((Xza;")
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The multidimensional Gaussian distribution

@ The d-dimensional vector x is multivariate Gaussian if it has a
probability density function of the following form:

1 1 _
p(x[p, X) = W exp (—2(X — ) E T (x - H))

The pdf is parameterized by the mean vector @ and the
covariance matrix X.
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The multidimensional Gaussian distribution

@ The d-dimensional vector x is multivariate Gaussian if it has a
probability density function of the following form:

_ 1 1 Ty-1
p(x[p, X) = W exp (—2(X —p) E(x— H))
The pdf is parameterized by the mean vector @ and the

covariance matrix X.

@ The 1-dimensional Gaussian is a special case of this pdf
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The multidimensional Gaussian distribution

@ The d-dimensional vector x is multivariate Gaussian if it has a
probability density function of the following form:

PRl E) = iy o0 (- TEx )

The pdf is parameterized by the mean vector @ and the
covariance matrix X.

@ The 1-dimensional Gaussian is a special case of this pdf

o The argument to the exponential 0.5(x — p) "X} (x — p) is
referred to as a quadratic form.

Informatics 2B: Learning and Data Lecture 9



Covariance matrix

@ The mean vector p is the expectation of x:

p = E[x]
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% — E[(x— u)(x— ) ]
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% — E[(x— u)(x— ) ]

@ X is a d x d symmetric matrix:

Ljj = E[(x — pi)(x — )] = E[0g — ) (xi — i)l = Zji
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% — E[(x— u)(x— ) ]

@ X is a d x d symmetric matrix:

Ljj = E[(x — pi)(x — )] = E[0g — ) (xi — i)l = Zji

@ The sign of the covariance helps to determine the relationship
between two components:
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

¥ = E[(x— u)(x— 1) ]
@ X is a d x d symmetric matrix:
Ljj = E[(x — pi)(x — )] = E[0g — ) (xi — i)l = Zji

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — 1;)(x; — i) will tend
to be positive;
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Covariance matrix

@ The mean vector p is the expectation of x:
p = E[x]

@ The covariance matrix X is the expectation of the deviation of
x from the mean:

% — E[(x— u)(x— ) ]

@ X is a d x d symmetric matrix:

Ljj = E[(x — pi)(x — )] = E[0g — ) (xi — i)l = Zji

@ The sign of the covariance helps to determine the relationship
between two components:
o If x; is large when x; is large, then (x; — 1;)(x; — i) will tend
to be positive;
o If x; is small when x; is large, then (x; — u;)(x; — ;) will tend
to be negative.
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Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation coefficient:

5;

9 = 0
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Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation coefficient:

5;

P(Xjan) = Pjk = \/ﬁ

@ Scale-independent (ie independent of the measurement units)
and location-independent, ie:

p(vaxk) = p(an + b, sx¢ + t)

Informatics 2B: Learning and Data Lecture 9



Correlation matrix

The covariance matrix is not scale-independent: Define the
correlation coefficient:

(:30) = pj = 2
p(Xj, Xk) = pjk =
J J S_USkk
@ Scale-independent (ie independent of the measurement units)
and location-independent, ie:
p(vaxk) = p(an + b, sx¢ + t)
@ The correlation coefficient satisfies —1 < p < 1, and

p(x,y) =+1 ify=ax+b a>0
p(x,y)=-1 ify=ax+b a<0
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Spherical Gaussian

Surface plot of p(x,, x,)
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Diagonal Covariance Gaussian

Contour plot of pix,. x,)

Surtace plotof plx,, )
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Full covariance Gaussian

Contour plotof pix, x)
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Parameter estimation

@ It is possible to show that the mean vector fi and covariance
matrix X that maximize the likelihood of the training data are

given by:
1 N
Fo n
“_NZX
n=1
1 N
< n n T
Z—Ng (x" — @)(x" — fr)

@ The mean of the distribution is estimated by the sample mean
and the covariance by the sample covariance
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Example data

5 L L L L L L
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Maximum likelihood fit to a Gaussian

5 L L L L L L
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Bayes theorem and probability densities

@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly)p(y)
p(x) = / p(x, y)dy
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Bayes theorem and probability densities

@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly)p(y)
p(x) = / p(x, y)dy

@ We may mix probabilities of discrete variables and probability
densities of continuous variables:

p(x, Z) = p(x|Z)P(Z)
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Bayes theorem and probability densities

@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly)p(y)
p(x) = / p(x, y)dy

@ We may mix probabilities of discrete variables and probability
densities of continuous variables:

p(x, Z) = p(x|Z)P(Z)
@ Bayes' theorem for continuous data x and class C:
p(x|C)P(C)

p(x)
P(Clx) o« p(x|C)P(C)

P(Clx) =
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Bayes theorem and univariate Gaussians

o If p(x | C) is Gaussian with mean . and variance o2
P(C | x) < p(x | C)P(C)
o N(x; e, 2)P(C)
1 _(X_NC)2>
ex P(C
x p( A ) PO
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Bayes theorem and univariate Gaussians

o If p(x | C) is Gaussian with mean . and variance o2

P(C | x) o< p(x | C)P(C)
o N(x; pic, 02)P(C)
1 —(x — 1)
x ol exp( (20‘; ) >P(C)

e Taking logs, we have the log likelihood LL(x | C):
LL(x | C) =1Inp(x | pic,0?)

_1 <_ In2r) — Ino? — X kel “’C)2>

2
2 o¢
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Bayes theorem and univariate Gaussians

o If p(x | C) is Gaussian with mean . and variance o2

P(C | x) o< p(x | C)P(C)
o N(x; pic, 02)P(C)
1 —(x — 1)
x ol exp( (20‘; ) >P(C)

e Taking logs, we have the log likelihood LL(x | C):
LL(x | C) =1Inp(x | pic,0?)

_ % <_ In(27) — Ino? — W)

Oc

@ The log posterior probability LP(C | x) is:
LP(C | x) o< LL(x | C) + LP(C)
)2
o< % (- In(27) — Ino? — (X“)> +1n P(C)

2
c
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Example: 1-dimensional Gaussian classifier

@ Two classes, S and T, with some observations:

Class S| 10 8 10 10 11 11
Class T [12 9 15 10 13 13
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Example: 1-dimensional Gaussian classifier

@ Two classes, S and T, with some observations:

Class S| 10 8 10 10 11 11
Class T [12 9 15 10 13 13

@ Assume that each class may be modelled by a Gaussian. The
mean and variance of each pdf are estimated by the sample
mean and sample variance:
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Gaussian pdfs for S and T

L |
0 5 10 15 20 25
X
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Example: 1-dimensional Gaussian classifier

@ Two classes, S and T, with some observations:

Class S |10 8 10 10 11 11
Class T |12 9 15 10 13 13

@ Assume that each class may be modelled by a Gaussian. The
mean and variance of each pdf are estimated by the sample
mean and sample variance:

n(S) =10
u(T) = 12

o3(S) =1
o?(T)=4
@ The following unlabelled data points are available:

x1 =10 x? =11 x}=6

To which class should each of the data points be assigned?
Assume the two classes have equal prior probabilities.
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Log odds

@ Take the log odds (posterior probability ratios):

In PSIX=x) _ 1 ((X—us)z C(x— 1r)?
PTIX=x 2\ 4} 2

+InP(S)—InP(T)

+ Ina% — InazT)
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Log odds

@ Take the log odds (posterior probability ratios):

mP6M=@__1<@—mV_U—mY
2

P(TIX=x) 2

+Ina§—|no’2T
oT

+InP(S)—InP(T)

2
Os

@ In the example the priors are equal, so:

L PSIX=x) 1<u—u92 (x — ur)?

_ _ = _ | 2_| 2
P(TIX=x) 2\ o2 oz TN naT)

— _% ((x—1o)2— (Xj412)2—|n4>
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Log odds

@ Take the log odds (posterior probability ratios):

P(TIX=x) 2

X = 1 — ps)? — ur)?
In 7P(5| x) _ <(X 55) — (x 5T) +Ina§—|no’2T>
oS 0T

+InP(S)—InP(T)
@ In the example the priors are equal, so:

L PSIX=x) 1<(X—us)2 (x — ur)?

_ _ = _ | 2_| 2
P(TIX=x) 2\ o2 oz TN naT)

— _% ((x—1o)2— (Xj412)2—|n4>

o If log odds are less than 0 assign to T, otherwise assign to S.
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Log odds

2
0
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o
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X
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Example: unequal priors

@ Now, assume P(S) = 0.3, P(T) = 0.7. Including this prior
information, to which class should each of the above test data
points (x!, x2, x3) be assigned?
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Example: unequal priors

@ Now, assume P(S) = 0.3, P(T) = 0.7. Including this prior
information, to which class should each of the above test data
points (x!, x2, x3) be assigned?

@ Again compute the log odds:

A=) 1 (e ps) _ (x—pr)
2

_ |2_| 2
"PTIX=x) 2\ of oz 7S ”"T)

+1InP(S) —InP(T)

_ s (x—12)?

(610
(610

- In4> +InP(S)—InP(T)

2_(x—12)2

NI~ N+~

- |n4> +1n(3/7)
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Log odds

0
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=
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Multivariate Gaussian classifier

e Multivariate Gaussian (in d dimensions):

Pl E) = 5 sy o0 (x0T E - )
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Multivariate Gaussian classifier

e Multivariate Gaussian (in d dimensions):

Pl E) = 5 sy o0 (x0T E - )

o Log likelihood:

LL(x|p, E) = — 2 In(2r) — S0 %]~ 2 (c— ) EHx — )
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Multivariate Gaussian classifier

e Multivariate Gaussian (in d dimensions):

Pl E) = 5 sy o0 (x0T E - )

o Log likelihood:

LL(x|p, E) = — 2 In(2r) — S0 %]~ 2 (c— ) EHx — )

o If p(x | C) ~ p(x | p, X), the log posterior probability is:

In P(Cx) —%(x _)TE  (x— ) — %In =]+ In P(C)
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@ 2-dimensional data from three classes (A, B, C).
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@ 2-dimensional data from three classes (A, B, C).

@ The classes have equal prior probabilities.
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@ 2-dimensional data from three classes (A, B, C).
@ The classes have equal prior probabilities.

@ 200 points in each class
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200 points in each class

and display using a scatter plot:

xa = load(’trainA.dat’);
xb = load(’trainB.dat’);
xc load(’trainC.dat’);
hold on;

scatter(xa(:, 1), xa(:,2),
scatter(xb(:, 1), xb(:,2),
scatter(xc(:, 1), xc(:,2),

)r),
7b7,
)C),

2-dimensional data from three classes (A, B, C).

The classes have equal prior probabilities.

Load into Matlab (n x 2 matrices, each row is a data point)

07);
’X’);
)*7).

3
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Training data
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Gaussians estimated from training data

4
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Testing data
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Testing data — with estimated class distributions
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Testing data — with true classes indicated
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Classifying test data from class A
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Classifying test data from class B

4
x
2 x
x x
x
PR S
o Xk
Ko RO %
X x X
oL X % X KX
XX XXy XX
O Xy x WX K X
REE VI
o % X x X x
xR x
ol o%x
Ll
6l
-8 | | | | | L L
-8 -6 -4 -2 0 2 4 6

Informatics 2B: Learning and Data Lecture 9



Classifying test data from class C
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Results

@ Analyze results by percent correct, and in more detail with a
confusion matrix
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@ Analyze results by percent correct, and in more detail with a
confusion matrix
e Rows of a confusion matrix correspond to the predicted classes
(classifier outputs)
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@ Analyze results by percent correct, and in more detail with a
confusion matrix
e Rows of a confusion matrix correspond to the predicted classes
(classifier outputs)
e Columns correspond to the true class labels
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@ Analyze results by percent correct, and in more detail with a

confusion matrix
e Rows of a confusion matrix correspond to the predicted classes

(classifier outputs)
e Columns correspond to the true class labels
o Element (r, c) is the number of patterns from true class c that

were classified as class r
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@ Analyze results by percent correct, and in more detail with a
confusion matrix

e Rows of a confusion matrix correspond to the predicted classes
(classifier outputs)

e Columns correspond to the true class labels

o Element (r, c) is the number of patterns from true class c that
were classified as class r

e Total number of correctly classified patterns is obtained by
summing the numbers on the leading diagonal
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@ Analyze results by percent correct, and in more detail with a
confusion matrix

e Rows of a confusion matrix correspond to the predicted classes
(classifier outputs)

e Columns correspond to the true class labels

o Element (r, c) is the number of patterns from true class c that
were classified as class r

e Total number of correctly classified patterns is obtained by
summing the numbers on the leading diagonal

@ Confusion matrix in this case:

True class
Test Data A B C
Predicted A |77 5 9
class B |15 88 2
cC| 8 7 89
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@ Analyze results by percent correct, and in more detail with a
confusion matrix

e Rows of a confusion matrix correspond to the predicted classes
(classifier outputs)

e Columns correspond to the true class labels

o Element (r, c) is the number of patterns from true class c that
were classified as class r

e Total number of correctly classified patterns is obtained by
summing the numbers on the leading diagonal

@ Confusion matrix in this case:

True class
Test Data A B C
Predicted A |77 5 9
class B |15 88 2
cC| 8 7 89

@ Overall proportion of test patterns correctly classified is
(77 + 88 + 89)/300 = 254/300 = 0.85.
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Decision Regions

Decision regions for 3—class example
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Example: Classifying spoken vowels

10 Spoken vowels in American English

Vowels can be characterised by formant frequencies —
resonances of vocal tract

o there are usually three or four identifiable formants
e first two formants written as F1 and F2

Peterson-Barney data — recordings of spoken vowels by
American men, women, and children

two examples of each vowel per person

for this example, data split into training and test sets
children’s data not used in this example

different speakers in training and test sets

(see http://en.wikipedia.org/wiki/Vowel for more)

Classify the data using a Gaussian classifier

Assume equal priors
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http://en.wikipedia.org/wiki/Vowel

Ten steady-state vowels, frequencies of F1 and F2 at their centre:

o IY — "bee”

o IH — "big"

o EH — “red”

e AE — “at”

@ AH — "honey”
o AA — “heart”
o AO — “frost”

e UH — “could”
e UW — "“you"

o ER — "bird”
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Vowel data — 10 classes

Peterson-Barney F1-F2 Vowel Training Data
3500

x
I

3000

2500

2000

F2/Hz

1500 —

o4
g
©<>g<> <><><><><§>

1000 —

1 |
1000 1200

Informatics 2B: Learning and Data Lecture 9




)

class 1 (IY

Gaussian for

and Data Lecture 9
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class 2 (IH)

Peterson-Barney F1-F2 Vowel Training Data

3500~
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x IH
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.
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Gaussian for class 3 (EH)

Peterson-Barney F1-F2 Vowel Training Data
3500 —
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2500

+ +
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class 4 (AE)

Peterson-Barney F1-F2 Vowel Training Data
3500 —

3000 —
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F2/Hz

1500 —

1000 —

|
1200
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class 5 (AH)

Peterson-Barney F1-F2 Vowel Training Data
3500 —

3000 —

2500~

2000 —
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1500 —

1000 —

|
1200
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Gaussian for class 6 (AA)

Peterson-Barney F1-F2 Vowel Training Data
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class 7 (AO)

Peterson-Barney F1-F2 Vowel Training Data
3500 —

3000 —
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Gaussian for class 8 (UH)

Peterson-Barney F1-F2 Vowel Training Data
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Gaussian for class 9 (UW)

Peterson-Barney F1-F2 Vowel Training Data
3500 —

3000 —
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Gaussian for class 10 (ER
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Gaussians for each class
Peterson-Barney F1-F2 Vowel Test Data

3500 —
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0 200 400 600 800 1000 1200
F1/Hz
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Test data for class 1 (1Y)
Peterson-Barney F1-F2 Vowel Test Data

3500 —
3000 —
2500~

2000 —

F2/Hz

1500 —
1000~
500 I I I ]
0 200 400 600 800 1000 1200
F1/Hz
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Confusion matrix

True class

Y

Y 20
IH 0
EH 0
AE 0
AH 0
AA 0
AO 0
UH 0
uw 0
ER 0
% corr. 100
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Test data for class 2 (IH)

Peterson-Barney F1-F2 Vowel Test Data

3500 —

3000 —

2500~

2000 —

F2/Hz

1500 —
1000~
500 I I I ]
0 200 400 600 800 1000 1200
F1/Hz
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Confusion matrix

True class

Y IH

Y | 20 0
IH 0 20
EH 0 0
AE 0 0
AH 0 0
AA 0 0
AO 0 0
UH 0 0
uw 0 0
ER 0 0
% corr. | 100 100
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Test data for class 3 (EH)

Peterson-Barney F1-F2 Vowel Test Data

3500 —

3000 —

2500~
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F2/Hz

1500 —

1000 —

1 |
1000 1200
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Confusion matrix

True class
IY IH EH
Y | 20 0 0
IH 0 20 0
EH 0 0 15
AE 0 0 1
AH 0 0 0
AA 0 0 0
AO 0 0 0
UH 0 0 0
uw 0 0 0
ER 0 0 4
% corr. | 100 100 75
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Test data for class 4 (AE)

Peterson-Barney F1-F2 Vowel Test Data

3500 —

3000 —

2500~

F2/Hz
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g
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1000 —
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Confusion matrix

True class
IY IH EH AE
Y | 20 0 0 0
IH 0 20 0 0
EH 0 0 15 3
AE 0 0 1 16
AH 0 0 0 1
AA 0 0 0 0
AO 0 0 0 0
UH 0 0 0 0
uw 0 0 0 0
ER 0 0 4 0
% corr. | 100 100 75 80
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Test data for class 5 (AH)

Peterson-Barney F1-F2 Vowel Test Data

3500 —

3000 —

2500~

2000 —

F2/Hz

1500 —

1000 —

1 |
1000 1200

500 L
0 200
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Confusion matrix

True class
Iy IH EH AE AH
Y | 20 0 0 0 0
IH 0 20 0 0 0
EH 0 0 15 3 0
AE 0 0 1 16 0
AH 0 0 0 1 18
AA 0 0 0 0 2
AO 0 0 0 0 0
UH 0 0 0 0 0
uw 0 0 0 0 0
ER 0 0 4 0 0
% corr. | 100 100 75 80 90
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Test data for class 6 (AA)

Peterson-Barney F1-F2 Vowel Test Data
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Confusion matrix

True class
IY IH EH AE AH AA
Y | 20 0 0 0 0 0
IH 0 20 0 0 0 0
EH 0 0 15 3 0 0
AE 0 0 1 16 0 0
AH 0 0 0 1 18 2
AA 0 0 0 0 2 17
AO 0 0 0 0 0 1
UH 0 0 0 0 0 0
uw 0 0 0 0 0 0
ER 0 0 4 0 0 0
% corr. | 100 100 75 80 90 85
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Test data for class 7 (AO)

Peterson-Barney F1-F2 Vowel Test Data
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Confusion matrix

True class
Iy IH EH AE AH AA AO
Y | 20 0 0 0 0 0 0
IH 0 20 0 0 0 0 0
EH 0 0 15 3 0 0 0
AE 0 0 1 16 0 0 0
AH 0 0 0 1 18 2 0
AA 0 0 0 0 2 17 4
AO 0 0 0 0 0 1 16
UH 0 0 0 0 0 0 0
uw 0 0 0 0 0 0 0
ER 0 0 4 0 0 0 0
% corr. | 100 100 75 80 90 85 80
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Test data for class 8 (UH)

Peterson-Barney F1-F2 Vowel Test Data
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Confusion matrix

True class
Iy IH EH AE AH AA AO UH
Y | 20 0 0 0 0 0 0 0
IH 0 20 0 0 0 0 0 0
EH 0 0 15 3 0 0 0 0
AE 0 0 1 16 0 0 0 0
AH 0 0 0 1 18 2 0 2
AA 0 0 0 0 2 17 4 0
AO 0 0 0 0 0 1 16 0
UH 0 0 0 0 0 0 0 18
uw 0 0 0 0 0 0 0 0
ER 0 0 4 0 0 0 0 0
% corr. | 100 100 75 80 90 85 80 90
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Test data for class 9 (UW)

Peterson-Barney F1-F2 Vowel Test Data
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Confusion matrix

True class
Iy IH EH AE AH AA AO UH UW
Y | 20 0 0 0 0 0 0 0 0
IH 0 20 0 0 0 0 0 0 0
EH 0 0 15 3 0 0 0 0 0
AE 0 0 1 16 0 0 0 0 0
AH 0 0 0 1 18 2 0 2 0
AA 0 0 0 0 2 17 4 0 0
AO 0 0 0 0 0 1 16 0 0
UH 0 0 0 0 0 0 0 18 5
uw 0 0 0 0 0 0 0 0 15
ER 0 0 4 0 0 0 0 0 0
% corr. | 100 100 75 80 90 85 80 90 75
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Test data for class 10 (ER)

Peterson-Barney F1-F2 Vowel Test Data
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Final confusion matrix

True class

Iy IH EH AE AH AA AO UH UW ER
Y | 20 0 0 0 0 0 0 0 0 0
IH 0 20 0 0 0 0 0 0 0 0
EH 0 0 15 3 0 0 0 0 0 0
AE 0 0 1 16 0 0 0 0 0 0
AH 0 0 0 1 18 2 0 2 0 0
AA 0 0 0 0 2 17 4 0 0 0
AO 0 0 0 0 0 1 16 0 0 0
UH 0 0 0 0 0 0 0 18 5 2
uw 0 0 0 0 0 0 0 0 15 0
ER 0 0 4 0 0 0 0 0 0 18
% corr. | 100 100 75 80 90 85 80 90 75 90

Total: 86.5% correct
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Classifying the training set

TN



Training set confusion matrix

True class

Y H EH AE AH AA AO UH UW ER

% 99 8 0 0 0 0 0 0 0 0
IH 3 85 15 0 0 0 0 0 0 3
EH 0 7 69 11 0 0 0 0 0 11
AE 0 0 5 86 4 0 0 0 0 4
AH 0 0 0 3 87 8 3 2 0 1
AA 0 0 0 0 4 82 10 0 0 0
AO 0 0 0 0 5 12 86 2 0 0
UH 0 0 0 0 0 0 2 73 19 10
uw 0 0 0 0 0 0 1 15 79 1
ER 0 2 13 2 2 0 0 10 4 72
% | 97.1 833 676 843 853 804 843 716 775 706

Total: 80.2% correct
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Decision Regions

Peterson-Barney F1-F2 Gaussian Decision Regions
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@ Using Bayes' theorem with pdfs
@ The Gaussian classifier: 1-dimensional and multi-dimensional

@ Vowel classification example
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