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Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Welcome to Inf2b - Learning!

Course structure

Today's Schedule:

@ Course structure
@ What is (machine) learning? (and why should you care?)
© Administrative stuff

o How to do well

@ Setting up a learning problem
(time allowing)
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http://wuw.inf.ed.ac.uk/teaching/courses/inf2b/

@ 1541 lectures (including review) - Tuesdays, Fridays
o Tutorials (starting in week 4)
@ Drop-in labs for Learning (Tue 11:10-13:00, Wed
13:10-15:00)
@ 1 assessed assignment (with drop-in labs)
CWI1: 06/Mar. — 03/Apr.
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Drop-in labs for Learning

Face detection

Viola—Jones Face detection (2001)

Tuesdays 11:10-13:00, Wednesdays 13:10-15:00 in AT-6.06
Starting in Week 2. Both sessoins are the same.

@ Worksheets available from the course webpage

Purposes of lab sessions
o Assistance in understanding basic algorithms and
techniques of machine learning and data analysis
e Assistance in programming with Matlab
o Assistance in working on the assignment (CW1)

Practice on machine learning using Matlab
e Work on toy problems for the topics taught in the course

o Demonstrator: Teodora Georgescu (Tuedays), Riccardo
Fiorista (Wednesdays)
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How would you detect
a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software
tag your friends?

http://demo.pittpatt.com,
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@ Face detector consists of linear combination of 'weak’ classifiers
that utilise five types of primitive features.

@ The detector is trained on a training data set of a large number of
positive and negative samples.

@ Scan the input image with a sub-window (24 x 24 pixels) to detect
a face.

Taken from: https://ahprojects.com/cvdazzle/
A nice demo: http://vimeo.com/12774628
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Hiding from the machines (cameras)

Applications of machine learning

Intro summary

The Viola-Jones face detector is fast, but has some drawbacks.

Taken from: https://ahprojects.com/cvdazzle/
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Within informatics:
o Vision: as we've seen. ( egl, eg2 )
@ Graphics: increasingly data driven

@ Al & Natural Language Processing (NLP): text
search/summarisation, speech recognition/synthesis, e.g.
IBM Watson

Robotics: vision, planning, control, ...

Compilers: learning how to optimise
and beyond: data analysis across the sciences

Every day:
o Adverts / recommendations all over the web - - - Big Data
@ Discounts in TeSCOS nitp://uw mathworks. co.u/discovery/big-data-natiab. henl
@ Speech recognition and synthesis (e.g. Siri, Echo),
Machine Translation, ...with self-driving cars
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o Fit numbers in a program to data (i.e. train machines on
data)

@ More robust than hand-fitted rules
o Can't approach humans at some tasks (e.g., vision)

@ Machines make better predictions in many other cases
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Attendance monitoring

Private study

Private study (cont)

@ Attendance monitoring with Top Hat

e Informatics 2B - Learning
o Join code: 322890
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@ ~2 hours private study per lecture in addition to tutorials
& assignments

No required textbook for Inf2b There are notes and slides.
See those for recommended books.

Importance of maths skills (especially algebra)
Why should you remember and get familiar with maths
formulas for machine learning?
e Good understanding of the ideas
e Guessing reasonable output of the model
o |dentifying/spotting the problems (bugs) with the
system implemented

Importance of programming practice [with Matlab or
Python] (attend the drop-in labs!)
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o Warning: Inf2b is NOT an easy course

@ Inf2b requires a solid maths background:
o Linear Algebra
e Calculus
o Probability

Independent learning (self-directed learning) is essential.
See the following page regarding differences between
secondary-school and university in terms of learning style
and what is expected from you as a student.
https://www.birminghan.ac.uk/accessibility/transcripts/school-uni-differences.aspx

@ For exam preparation, use not only notes, but also slides
and tutorial sheets. NB: slides are not just the summaries
of notes.
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Maths skills

Maths skills (cont.)

Two hours study this week?

Useful webpage to check your maths:
http://www.mathsisfun.com/algebra
o Laws of exponents (Exponent rules)
e.g. xMx" = XnH»n_ (Xm)n — xmn
o Log and exponential
e.g. log(x"y™) = nlogx + mlogy, e"* = x
@ Quadratic equations and their solutions
eg. a2+ bx+c =0, x = =bhvb=tac

o Vectors v = (vi,vo,..., vp)"

o Notation: column/row vectors, transpose
o Addition and subtraction eg. u -+ v

o Dot product (inner product) u-v =u'v

o Equation of a straight line, linear equations
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o Matrices A= (a;). A = a;

Addition, subtraction A+B, A-B

Multiplication (AB); = ¢, ayby;

Transpose (ABC)” = CTBTAT

Determinant |A|

Inverse A 1A =AA1 =]

Eigenvalues and eigenvectors

Vector spaces, subspaces, linear independence, basis and
dimension, rank and nullity

Linear transformations y = Ax

NB: See Section 4 of Learning Note No. 1 for the notation we
use.

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

o Start to familiarise yourself with MATLAB (or
OCTAVE)

Introductory worksheet on the course website

Many others at the end of a web search

Learn Matlab try the lab sheets for the 1st lab this week.

Love Python? Learn NumPy+SciPy+Matplotlib
(instead, or as well)

o Vital skills:
e add, average, multiply vectors and matrices
o plot data stored in vectors
e save/read data to/from files
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Classroom

Classification of oranges and lemons

A two-dimensional space

o Have a look at the lecture note and slides in advance to
the lecture.

@ Have questions prepared to ask.
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Introdution to Learning and Data

Inf2b - Learning: Lecture 1

Represent each sample as a point (w, h) in a 2D space
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Photo image — pixels

Pixel image to a feature vector

Image data as a point in a vector space

X1 X3
X2
% > x=| .
Xo4 S
. S T
— e x=(2,6,5)
Turn each cell (pixel) into a number (somehow, see notes)
Unravel into a column vector, a feature vector X
= represented digit as point in 64D : 2
T i
x=(x,x,...,%a) , x€{0,...,127} orx; € {0,1} | i
X
http://alex.seewald.at/digits/
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Euclidean distance Question Example of image resolutions
Distance between 2D vectors: u = (uy, u2)" and v = (v, vo)7
n(u,v) = \/(Ul —wv)? + (12 — w)? Have high-resolution scans of digits.
n
. . . How many pixels should be sample? . - n
Distance between D-dimensional vectors: u = (uy, ..., up)" ye P loifim n g . |
and v = (vi,...,vp)"
5 What are pros and cons of:
2
na(u,v) = | > (o= v
’ prt 2x2, 4x4, 16x16, or 100x100?
Measures similarities between feature vectors
i.e., similarities between digits, movies, sounds, galaxies, ...
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Exercises in the lecture note 1

Summary

@ Try the exercises in the lecture note 1.
@ No solutions will be published.
@ In case you're not sure if your answers are correct.

o Discuss them with your classmates
o Use the Inf2b-Learning discussion board on Piazza
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o Self-study everyday.

@ Drop-in labs for Learning starts in Week 2 (21st, 22nd
Jan))
Try the worksheet before the lab.

@ Tutorial starts in Week 4.
@ Discussion forum in Piazza

@ Office hours: Wednesdays at 14:00-15:00 (TBC) in
IF-3.04
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Recommender systems

Today's schedule

The Films in 2008

Today's Recommendations For You

Here's a daily sample of

Malcolm " &
Gladwell
= i

an I 2 utshell
(Paperback) by Joseph Adler

dation

e A What makes recommendations good?
T NDICHEET PACKAGING

= )

comins

P ecommendaion
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@ Data and distances between entities
@ Similarity and recommendations

© Normalisation, Pearson Correlation
@ Transposed problem
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SEANIPENN
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The Critics

Film review scores by critics — data

Problem definition

David Denby Todd McCarthy Joe Morgenstern

Claudia Puig

Peter Travers Kenneth Tu ran
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Australia B‘z‘g SOf Ef%re’: Hancock Milk l§7 ea‘ij
Denby 3 7 4 9 9 7
McCarthy 7 5 5 3 8 8
M'stern 7 5 5 0 8 4
Puig 5 6 8 5 9 8
Travers 5 8 8 8 10 9
Turan 7 7 8 4 7 8

Representation of data & notation:

Score of movie m by critic c:

3749 97
7553 8 8 Xems  SCc(m)
x=| 155084 Score vector by critic c:
5685 9 8 -
5888 109 Xe = (Xe1s -+ Xem)
TT84 T8 aka feature vector
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Australia BOLCI%/ SOf E:‘Itre,; Hancock  Milk R,iiaij
Denby 3 7 4 9 9 7
McCarthy 7 5 5 3 8 8
M’stern 7 5 5 0 8 4
Puig 5 6 8 5 9 8
Travers 5 8 8 8 10 9
Turan 7 7 8 4 7 8
Userl - - - 2 - 7
User2 - 6 9 - 6

Predict user's score X,,, for unseen film m based on the film
review scores by the critics. = Film recommendation
(Fill the missing elements based on others)
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A two-dimensional review space

Euclidean distance

Distances between critics

10
Travers e
T
8F McCarthy e wan, Puig
User 1° Denby ¢
B s
o
o
>
& 4 eMorgenstern
2
0
0 2 4 6 8 10
Hancock
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Distance between 2D vectors: u = (u1, u2)" and v = (vi, vo)7

r(u,v) = /(i — v)2 + (12 — )2

Distance between D-dimensional vectors: u = (uy,...,up)"
and v =(vi,...,vp)"

D
3 (uk = we)?
k=1

Measures similarities between feature vectors
e., similarities between digits, critics, movies, genes, ...

NB: ry( ) denotes “2-norm”, c.f. p-norm or LP-norm. [Note 2]
cf. other distance measures, e.g. Hamming distance,
city-block distance (L norm).
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M
n(xi, %) = || 32 (im = %m)°
m=1

Denby McCarthy M'stern Puig Travers Turan
Denby 177 10.6 6.2 52 7.9
McCarthy | 7.7 5.0 4.4 72 39
M'stern | 10.6 5.0 7.5 10.7 6.8
Puig | 6.2 4.4 7.5 3.9 3.2
Travers | 5.2 7.2 10.7 3.9 5.6
Turan | 7.9 3.9 6.8 3.2 5.6

NB: Distances measured in a 6-dimensional space (M = 6)
The closest pair is Puig and Turan
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2D distance between Userl and critics

Simple strategy 1 for film recommendation

Film recommendation for User2

10 @ Find the closest critic, c*, to User u,
I for % MC?*’”T“Y Turan
: Travers r(Userl, McCarthy) © USE Xerm 10T Xum: o Pug
Turan ® Travers
8} McCarthye e ePuig _ (273)2 4 (778)2 N
° Denby o Australia Body of - Burn Hancock Milk Rev e Denby
- User 1 =2 Lies  After Road ® Morgenstern °
g 6f Denby 3 7 4 9 9 7
T rp(Userl, Turan) McCarthy 7 5 5 3 8 8
O 4l RV NG YY) M'stern 7 5 5 0 8 4 /
4 o Morgenstern 2 _g8)2 S Body of B R
1 ¢} =/ (2—4) (7-8) Puig 5 6 8 5 9 8 Australia OL;'CYSD A?t;n, Hancock Milk Roea‘ij ry(critic, User2)
I =5 Travers 5 8 8 8 10 9 Denby 3 7 4 9 9 7 V2T 5.2
2t Turan 7 7 8 4 7 8 McCarthy| 7 5 5 3 8 8 V21 ~ 4.6
| M’stern 7 5 5 0 8 4 V21~ 4.6
Puig 5 6 8 5 9 8 VB 22
op Userl - - - 2 - 7 Travers| 5 8 8 8 10 9 | VIA~37
0 2 4 6 8 10 User2 - 6 9 - - 6 Turan| 7 7 8 4 7 8| emo24
Hancock User2 - 6 9 - - 6
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Strategy 2 Similarity measures Critic review score statistics

Consider not only the closest critic but also all the critics.
Option 1: The mean or average of critic scores for film m:

There's a choice. For example:

c
1
c _ + ) 1 . Body of Burn . Rev
Xum = C ZXcm snu(u, v) _ : Australia |5 After Hancock Milk poaq/mean std.
Ontion 2 Weishted o " +n(u,v) Denby| 3 7 4 9 9 7 |65 25
ion 2: Weighted average over critics:
P . & . & . o Can now predict scores for User 2 (see notes) McCarthy 7 5 5 3 8 8 | 6.0 2.0
Weight critic scores according to the similarity between M'stern 7 5 5 0 8 4 |48 2.8
the critic and user. Good measure? Puig| 5 6 8 5 9 8 |68 17
1 c Consider di 0 dinb Travers| 5 8 8 8 10 9 |80 17
Rum = —— Z(SiIIl(XmXc)  Xem) o Consider distances 0, oo, and in between. Turan 7 7 8 4 7 8 |68 15
oo sim(xe, xe) @ What if some critics rate more highly than others?
cf. Weighted arithmetic mean (weighted average) in maths: @ What if some critics have a wider spread than others?
wixg + wox o WeXe Do WiXi o What if not all critics have seen the same movies?
Wi+ Wy + W, YW (missing data problem)
NB: if every x; has the same value, so does X
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Normalisation

Normalisation of critics review scores

Pearson correlation coefficient

Sample mean and sample standard deviation of critic c's scores:

- 1Y
Xe = M’;Xcm

1 M 2
s =\ =12 (em

Different means and spreads make reviewers look different.

= Create 'standardised score’ with mean zero and st. dev. 1.
Standard score:
Xem — Xc
sz I —
SC
Many learning systems work better with standardised features /
outputs

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems 17

Critics original review scores

10 “
8 ¥ Body of Burn Rev
P! Australia B9 B4 Mancock  Mik e
L6 Denby | 3 7 7 g T 7
g Carth 7 5 5 3 8 8
8 Mstem| 7 5 5 0 8 4
4 * Puig 5 6 8 5 9 8
Travers| 5 8 8 8 09
) Turan | 7 7 8 4 78
i 2 3 4 5 6
Films
Mean-normalised review scores Standarised review scores
4 4
8
8 7 82
2 . 8 - |
8 2 3 S
g 4 » 4
g ¥ £
57 22
=

=

1 2 3 4 5 6 1 2 3 4 5 6
Films Films
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Estimate of ‘correlation’ between critics ¢ and d:

1 M
fed = M1 Elzcmzdm
m=

1 M/ X X X

_ cm — Xc dm — Xd
ToM-1 mzzl ( Se ) ( Sd ) '
@ Based on standard scores

(a shift and stretch of a reviewer’s scale makes no difference —
shift/scale invariant)

o_lgrcdgl

@ How r.y can be used as a similarity measure?

Used in the mix by the winning netflix teams:
https://wuw.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pd
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Pearson correlation coefficient (cont.)

X3

Oab |

X2

Xi
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e Transposed problem

And a trick: transpose your data matrix and run your code again.
The result is sometimes interesting.
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Transposed problem

Customers Who Bought This Item Also Bought

NETHERLAND
JOSEPN ONERL
e
The Girl with the Dragon Netherland by Joseph O'Neill
Tattoo by Stieg Larsson Yrirdrs (59) £3.86

i«

Mobius Dick by Andrew

Fedrdof's (12) £5.99 Fednfolnfs (60) £3.99
Page 1 of 16
o oocsg,
)
c;iﬂ

Once Upon a Time in the ‘—
North by Philip Pullman
Foidoki (17) £7.49

The Secret Scripture by
Sebastian Barry
Fonfoit (13) £8.49

Child 44 by Tom Rob Smith
Foirdoi's (57) £6.49
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Another strategy — based on distance between
Movies

The Netflix million dollar prize

Further reading (s

Body of Burn Rev

Australia Lies After Hancock Milk Road
Australia 5.8 5.3 10.9 8.9 7.2
Body of Lies 5.8 3.7 6.6 5.9 4.0
Burn After 53 3.7 8.9 7.0 45
Hancock 10.9 6.6 8.9 109 84
Milk 8.9 5.9 7.0 10.9 4.8

Rev. Road 7.2 4.0 4.5 8.4 4.8

Run the same code for distance between critics,
simply transpose the data matrix first

Transpose of data in numpy is data.T, in Matlab/Octave it's
data’
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C = 480, 189 users/critics
M = 17,770 movies
C x M matrix of ratings € {1,2,3,4,5}
(ordinal values)

Full matrix ~ 10 billion cells
~ 1% cells filled (100,480,507 ratings available)

References (NE)

@ https://www.netflixprize.com
@ https://doi.org/10.1109/MSPEC.2009.4907383
@ https://doi.org/10.1109/MC.2009.263
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@ J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez,
Recommender systems survey,
Knowledge-Based Systems, Volume 46, 2013, pp.109-132.
https://doi.org/10.1016/].knosys.2013.03.012

@ Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang,
Guangquan Zhang,
Recommender system application developments: A survey,
Decision Support Systems, Volume 74, 2015, pp.12-32.
https://doi.org/10.1016/j.dss.2015.03.008

@ Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay
Deep Learning based Recommender System: A Survey and
New Perspectives,
ACM Computing Surveys (CSUR), February 2019, Article
No.: 5.
https://doi.org/10.1145/3285029
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Quizzes

Summary

Drop-in labs for Learning

Q1: Give examples for r,y &~ —1, 0, and 1.

Q2: Show the Pearson correlation coefficient can be rewritten
as
En,\ja(xcm — Xe)(Xdm — X4)

o (xem — %P/ Oxam — o)

Q3: How the missing data of critics scores should be treated?

Fed

Q4: What if a user provides scores for a few films only?
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o Rating prediction: fill in entries of a C x M matrix
@ A row is a feature vector of a critic

@ Guess cells based on weighted average of similar rows

Similarity based on distance and Pearson correlation coef.

Could transpose matrix and run same code!

@ NB: we considered a very simple case only.

@ Try the exercises in Note 2, and do programming in Lab 2.
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@ Labl on 21th at 11:10-13:00, 22nd Jan. at 13:10-15:00 in
AT-6.06.

“Similarity and recommender systems”

o Lab worksheet available from the course web page.

@ Questions outside the lab hours:
http://piazza.com/ed.ac.uk/spring2019/infr08009inf2blearning
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Matlab/Octave version

Matlab/Octave square distances

NumPy programming example

c_scores = [
37 H

© 0 P 00 N

75
75
56
58

00 U1 U1
I > 00O W

77 81; % CxM
u2_scores = [6 9 6];
u2_movies = [2 3 6]; % one-based indices

% The next line is complicated. See also next slide:

d2 = sum(bsxfun(@minus, c_scores(:,u2_movies), u2_scores). 2, 2)’;

r2 = sqrt(d2);
sim = 1./(1 + r2); % 1xC
pred_scores = (sim * c_scores) / sum(sim) % 1xM = 1xC * CxM

Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Other ways to get square distances:

% The next line is like the Python, but not valid Matlab.
% Works in recent builds of Octave.
d2 = sum((c_scores(:,u2_movies) - u2_scores)."2, 2)’;

% 0ld-school Matlab way to make sizes match:
d2 = sum((c_scores(:,u2_movies) - ...

repmat (u2_scores, size(c_scores,1), 1)).72, 2)’;

% Sq. distance is common; I have a general routine at:

% homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_dist.m

d2 = square_dist(u2_scores’, c_scores(:,u2_movies)’);

Or you could write a for loop and do it as you might in Java.

Worth doing to check your code.
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from numpy import *

c_scores = array([

3, 7, 4, 9, 9, 71,
7, 5, 5, 3, 8, 8],
7, 5, 5, 0, 8, 4],
5, 6, 8, 5, 9, 8],
[5, 8, 8, 8, 10, 91,
(7, 7,8, 4, 7, 8]11) #C,M

u2_scores = array([6, 9, 6])
u2_movies = array([1, 2, 5]) # zero-based indices

r2 = sqrt(sum((c_scores[:,u2_movies] - u2_scores)*x2, 1).T) # C,
sim = 1/(1 + r2) # C,

pred_scores = dot(sim, c_scores) / sum(sim)

print (pred_scores)

# The predicted scores has predictions for all movies,
# including ones where we know the true rating from u2.
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Office hours: Wednesdays at 14:00-15:00 in IF-3.04
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Today's Schedule

Clustering

@ What is clustering

© K-means clustering

© Hierarchical clustering

e Example — unmanned ground vehicle navigation

© Dimensionality reduction with PCA and data visualisation

© Summary

Inf2b - Learning: Lecture 3 Clustering and data vit

o Clustering: partition a data set into meaningful or useful
groups, based on distances between data points

@ Clustering is an unsupervised process — the data items
do not have class labels

o Why cluster?

Interpreting data Analyse and describe a situation by
automatically dividing a data set into
groupings

Compressing data Represent data vectors by their cluster
index — vector quantisation
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Clustering

Visualisation of film review users

Application of clustering

“Human brains are good at finding regularities in data.
One way of expressing regularity is to put a set of objects
into groups that are similar to each other. For exam-
ple, biologists have found that most objects in the nat-
ural world fall into one of two categories: things that
are brown and run away, and things that are green and
don't run away. The first group they call animals, and
the second, plants.”

Recommended reading: David MacKay textbook, p284—

http://www.inference.phy.cam.ac.uk/mackay/itila/
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MovieLens data set
(http://grouplens.org/datasets/movielens/)
C =~ 1000 users, M =~ 1700 movies

2D plot of users based on rating similarity
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@ Face clustering
doi: 10.1109/CVPR.2013.450
LHI-Animal-Face dataset
o Image segmentation
http://dx.doi.org/10.1093/bioinformatics/btr246
@ Document clustering
Thesaurus generation
@ Temporal Clustering of Human Behaviour
http://www.f-zhou.com/tc.html
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A two-dimensional space The Unsupervised data Manderins
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10 - Oranges: e
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http://homepages.inf.ed.ac.uk/imurray2/teaching/oranges_and_lemons/ W|dth/cm W|dth/cm
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Navel oranges Spanish jumbo oranges Belsan lemons
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Some other lemons “Selected seconds” oranges K-means clustering
T T T T T T
10 F § - 10 § - A simple algorithm to find clusters:
c o, O % o e o, O %o
< <
{ 8 | %0 03%0 — { 8 I §<> 03%0 — @ Pick K random points as cluster centre positions
E < § E < § @ Assign each point to its nearest centre”
%D 6 | _ qb—)o 6+ _ © Move each centre to mean of its assigned points
< < @ If centres moved, goto 2.
ool ool
1 & . 4 & -
I I I I I I * In the unlikely event of a tie, break tie in some way.
6 8 10 6 8 10 For example, assign to the centre with smallest index in
memory.
width/cm width/cm
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K-means clustering

Evaluation of clustering

Theory of K-means clustering

I I I
wf 8 :
e % o0 %o
o
(©] 8 | -
z [ el
= L3
a0
‘© 6 -
=
Vel
41 & -
| | |
6 8 10
width/cm
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@ One way to measure the quality of a k-means clustering
solution is by a sum-squared error function, i.e. the sum
of squared distances of each point from its cluster centre.

o Let z,, = 1 if the point x, belongs to cluster k and
Zin = 0 otherwise. Then:

K N 5 Xp = (Xn1, - - XNU)T
E= ZZZ’(“HX” — mk|| my = (Mg, ..., m)k/-,)T

k=1n=1 ||| : Euclidean (L*) norm

where my is the centre of cluster k.

Sum-squared error is related to the variance — thus
performing k-means clustering to minimise E is
sometimes called minimum variance clustering.

@ This is a within-cluster error function — it does not
include a between clusters term

Inf2b - Learning: Lecture 3 Clustering and data visualisation 21

o If assignments don't change, algorithm terminates.

e Can assignments cycle, never terminating?

Convergence proof technique: find a Lyapunov
function L, that is bounded below and cannot increase.
L = sum of square distances between points and centres

NB: E(+) < E(®)

e K-means is an optimisation algorithm for L.
Local optima are found, i.e. there is no guarantee of
finding global optimum. Running multiple times and
using the solution with best £ is common.

Inf2b - Learning: Lecture 3 Clustering and data visualisation
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How to decide K7

Failures of K-means (e.g. 1)

Failures of K-means (e.g. 2)

@ The sum-squared error decreases as K increases T T T 11 = ; -
°
(E—=0asK — N) . o )&3" ¢
L ° - Lo _
@ We need another measure?! o ° s 7 ¥ o,
0% 0o oo © RIS
3.5 ¢ 80% o 3 3L O&wo X <]
5 11 RIS %Og i %oo o %
10) o o<>° & °& -1 o"c@ g PRI
5 9 v Yvv 00 20 0 S ° 5. XN
825 e s & <o W X N
° = g ‘ oy < 8o < 5 F <o -
3 2 £ AR L ° ° &0 > O
5 z 7 ot o % )
S15 g 3 1 M 20
av 2 9 ! ! ! -9 L L L
g, 5
3 - 3 5 7 3 5 7 9 11
0.5 a e
% 2 4 6 8 10 @t
" . .
K width [em] Large clouds pull small clusters off-centre Distance needs to be measured sensibly.
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Clustering clustering methods ()

Hierarchical clustering ()

Bottom-up clustering of the lemon/orange data

@ K-means clustering is not the only method for clustering
data

@ See:
http://en.wikipedia.org/wiki/Cluster_analysis
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Form a ‘dendrogram’ / binary tree with data at leaves

Bottom-up / Agglomerative:
@ Repeatedly merge closest groups of points

@ Often works well. Expensive: O(N®)

Top-down / Divisive:
@ Recursively split groups into two (e.g. with k-means)
@ Early choices might be bad.
@ Much cheaper! ~ O(N?) or O(N?log N)

More detail:
Pattern Classification (2nd ed.), Duda, Hart, Stork. §10.9
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Hierarchical clustering (centroid-distance)
T T

Orange 5
a1
G

3
H
TN

1

1
Orange 18
Orange 22
Orange 12

2 25
inter cluster distance
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Stanley

Inside Stanley

Perception and intelligence

Stanford Racing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/

Inf2b - Learning: Lecture 3 Clustering and data visualisation

| JEE—

"ADDF database

Laser 1 interface
Laser 2 nterface.
Laser 3 interface.

GLOBAL
SERVICES

Stanley figures from Thrun et al., J. Field Robotics 23(9):661, 2006,

Inf2b - Learning: Lecture 3 | Clustering and data visualisation

(a) Beer Bottle Pass (b) Map and GPS corridor

s

It would look pretty stupid to run off the road,
just because the trip planner said so.

Inf2b - Learning: Lecture 3 Clustering and data visualisation
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How to stay on the road?

Clustering to stay on the road

Dimensionality reduction and data visualisation

Classifying road seems hard. Colours and textures change:
road appearance in one place may match ditches elsewhere.

Inf2b - Learning: Lecture 3 Clustering and data visualisation

Stanley used a Gaussian mixture model. “Souped up k-means.”
The cluster just in front is road (unless we already failed).
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o High-dimensional data are difficult to understand and
visualise.
o Consider dimensionality reduction of data for visualisation

Project each sample in 3D onto a 2D plane

Inf2b - Learning: Lecture 3 Clustering and data visualisation
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Orthogonal projection of data onto an axis

Optimal projection of 2D data onto 1D

Principal Component Analysis (PCA)

\
[y
\
'
\
Iy

o H-"Xy=llxllcosd
[lzell=1 =u'x
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X, X,

o Mapping 2D to 1D: y, = u'x, = U1Xy + UaXn
o Optimal mapping: max Var (y)
u
Var (y) = g5 30 (v — 7)°

@ cf. least squares fitting (linear regression)
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X,

@ Mapping D-dimensional data to a principal component
axisu = (uy,...,up)” that maximises Var (y):

Yn:uTxn: thXp1 + -+ + UpXpD NB: [lu[ =1

@ u is given as the eigenvector with the largest eigenvalue
of the covariance matrix, S:
5= L S BB k=13 x
N-1 n=1 ! ! ’ Nn:l !

o Eigen values ); and eigenvectors p; of S:
Spi=X\p;, i=1,....,D
If A&y > X2 >...> Ap, then u=pq, and Var (y) =\
NB: p/p;=0,ie p; Lp;fori#j
p; is normally normalised so that ||p;| = 1.

Inf2b - Learning: Lecture 3 Clustering and data visualisation
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Covariance matrix

Principal Component Analysis (PCA) (cont)

PCA on the film review toy data

S11 . SiD
S = oo -+ + D-by-D symmetric matrix

Sp1 ... SDD

@ In scalar representation:
1 & 1Y
Sjj = 7N—1; (%ar = %) (%nj — %), Xi = N; Xni

@ Relation with Pearson’s correlation coefficient:

1 ) (Xm.i)_(i> <an_)_(j>
i = o [ Anj 7
N*]."X:; S; Sj
11w
= Ly N-1 z(x"f = %) (% — %)
n—=
Sij o
= 4 cf: si = /si =
Sii Sjj
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o Let v = py, i.e. the eigenvector for the second largest
eiven values, \»

@ Map x, on to the axis by v :

Zp = vTx,, = V1Xp1 + -+ VDXpD
Point (yn, z,)" in R? is the projection of x, € RP on the
2D plane spanned by u and v.

Var(y) = A1, Var(z) =X
Can be generalised to a mapping from RP to R’ using
{p1,-..,Pe}, where £ < D.

@ NB: Dimensionality reduction may involve loss of
information. Some informaation will be lost if

Ef:l)‘i

E;D:l)‘i
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Australia Boﬁg Sof Elljtre"r Hancock Milk RR;sa‘ii
Denby 3 7 4 9 9 7
McCarthy 7 5 5 3 8 8
M'stern 7 5 5 0 8 4
Puig 5 6 8 5 9 8
Travers 5 8 8 8 10 9
Turan 7 7 8 4 7 8

—0.341 0.345 0.326 —0.180 0.603 —0.512
0.255 0.151 —0.240 —0.548 0.496 0.554
0.101 0.786 —0.503 0.028 —0.280 —0.198
0.827 —0.154  0.096 —0.182 0.025 —0.450
0.181 —0.065 —0.341 0.733 0.556 0.015
0.304 0.461 0.676 0.309 —0.047 0.375

2.66 —1.07 0.53 —4.67 —1.20 —0.67
—1.07 147107 327 060 1.27
053 1.073.47 067 020 1.87
—4.67 3.270.67 10.97 230 3.67
—1.20 060020 230 1.10 0.60
—0.67 1271.87 3.67 060 3.07

15.8 0 0 0 0 0

0 4.85 0 0 0 0

Q= 0 0 113 0 0 0
- 0 0 0 0.634 0 0

0 0 0 0 0288 0

0 0 0 0 0 0

where P = (py,..., ps) and (Q)i = Aifori=1,..., 6

Inf2b - Learning: Lecture 3 Clustering and data visualisation 42

PCA on the film review toy data (cont.)

Dimensionality reduction D — ¢ by PCA

Summary

o Clustering

1 n Pl x P! K-means for minimising ‘cluster variance’

21 Turan Vo pJx pJ Review notes, not just slides
2 . * : - : - : [other methods exist: hierarchical, top-down and bottom-up]
o Travers . . .
g 11 Pui
g ’ ye p/x p/ . ,
S 1o o Unsupervised learning
— * .

4 . .
g, McCarthy where {p;};_, are the eigenvectors for the ¢ largest eigenvalues Spot structure in unlabelled data
A > . .
3 o of S. The above can be rewritten as Combine with knowledge of task
5 K
o g [Morgenstern

T : } D ¢ A .
S y=A"x linear transformation from R” to R o Principal Component Analysis (PCA)
5 7 . . Find principal component axes for dimensionalit
o « y=(1,..,y)" : (-dimensional vector principa’ componer ¥

Denb . reduction and visualisation
6 ; ; ; ; ~ben A=(p1,...,p) 1 D x { matrix
2 4 6 8 10 12 14
1st principal component o Try implementing the algorithms! (Lab 3 in Week 4)
In many applications, we normalise data before PCA, e.g. y = AT (x — ).
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Further reading (s

Quizes

@ Rui Xu, D. Wunsch, “Survey of clustering algorithsm,” in IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645-678, May
2005.
https://doi.org/10.1109/TNN.2005.845141

@ Dongkuan Xu, Yingjie Tian, “A Comprehensive Survey of
Clustering Algorithms,” Annals of Data Science, 2015, Volume 2,
Number 2, Page 165.
https://doi.org/10.1007/s40745-015-0040-1

@ C. Bishop, “Pattern Recognition and Machine Learning,” Chapter
12.1 (PCA).
https://www.microsoft.com/en-us/research/people/
cmbishop/prml-book/

@ C.0.S. Sorzano, J. Vargas, A. Pascual Montano, “A survey of
dimensionality reduction techniques,” 2014.
https://arxiv.org/abs/1403.2877
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Q1: Find computational complexity of k-means algorithm

Q2: For k-means clustering, discuss possible methods for
mitigating the local minimum problem.

Q3: Discuss possible problems with k-means clustering and
solutions when the variances of data (i.e. s;, i=1,...,D)
are much different from each other.

Q4: For k-means clustering, show EHD) < E® g

Q5: At page 37, show y = u”x.

Q6: At page 39, show Var (y) = A1, where )\; is the largest
eigenvalue of S. (nve)

Q7: The first principal component axis is sometimes confused
with the line of least squares fitting (or regression line).
Explain the difference.
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Lecture 4: Classification and nearest neighbours

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
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Today's topics

Types of learning problems

Supervised lea

rning

© Classification

© Nearest neighbour classification
© Decision boundary

o Tips on pre-processing data

© Generalisation and over-fitting

Classification and nearest neighbours

System
Data input output Type of problem Type of learning
X {x} groups (subsets) clustering unsupervised learning
(x,y) x | y: discrete category | classification supervised learning
(x,y) X y: continuous value regression supervised learning

Test mode

Classification

" © @G?

where x = (x1,...,xp)7 : feature vector
y : target vector or scalar
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C

New data Label

—

Goal of training: develop a classifier of good generalisation
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Supervised learning

Classification

Nearest-neighbour classifier

T
- Oranges: o
e %o Lemons: ¢
O -
\
>
=
.oo
3 i
=
| | |
6 8 10
width/cm

@ The data has a feature vector x = (x1,%,...,xp)” and a
label c € {1,...,C}

@ Training set: A set of N feature vectors and their labels
(Xl, Cl)7 ey (XN, CN)

@ Use a learning algorithm to train a classifier from a
training set

o Test set: a set of feature vectors to which the classifier
must assign labels — used for evaluation. (NB: training
and test sets should be mutually exclusive)

@ Error function: how accurate is the classifier? One option

is to count the number of misclassifications:
# of misclassified samples

# of test samples

Error rate =

Inf2b - Learning: Lecture 4 | Cl and nearest neighbours

o Nearest neighbour classification: label a test example to
have the label of the closest training example
o K-nearest neighbour (K-NN) classification: find the K
closest points in the training set to the test example;
classify using a majority vote of the K class labels
@ Training a K-nearest neighbour classifier is simple! —
Just store the training set
o Classifying a test example requires finding the K closest
training examples
e This is computationally demanding if the training set is
large — potentially need to compute the Euclidean
distance between the test example and every training
example
e Data structures such as the kD-tree can make finding
nearest neighbours much more efficient (in the average
case
)
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Classification and nearest neighbours

Inf2b - Learning: Lecture 4

Classifying test data with K-nearest neighbours

1-nearest neighbour

3-nearest neighbour

Height/cm

=)
<

s 20  Circumference/cm
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Height/cm

)
<

20  Circumferencelcm
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Height/cm

=)
<

15 20  Circumferencelem
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5-nearest neighbour

K-NN classification algorithm

Geometry of nearest neighbour

E v v
-l
. . A
I
vy For each test example z € Z:
10
.o, o Compute the distance r(z,x) between z and each training
oy example (x,¢c) € X
. v @ Select Ux(z) C X, the set of the k nearest training .x\{
v examples to z /.
v o ° @ Decide the class of z by the majority voting: N
L] ° /
s . c(z) = argmax Z 0jc v
J LY (o) € Un(z)
1
1
i
1 -
[ >
s 20  Circumferencelcm
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Geometry of nearest neighbour — decision boundary| Geometry of nearest neighbour Voronoi tessellation
and decision regions
A 5 —
4
v ®
3
v
2 ® ®
v
1
o ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7
> Delaunay triangulation Voronoi diagram
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Decision boundary Decision regions Decision boundaries for C = 3
Decision boundary: boundary (surface) that partitions the Decision regions: regions separated by the decision boundaries
vector space into subsets of different classes.
K-NN classification forms piecewise-linear decision boundary.
20
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What K should we use?

Learning curves

LANDSAT Application

An example where a large K reduces noise

K=1 K =15
(Black curve: KNN decision boundary, broken purple curve: the Bayes decision boundary
The Elements of Statistical Learning (2nd Ed.)
Hastie, Tibshirani, Friedman. §13.3 p463—
http://statweb.stanford.edu/~tibs/ElemStatLearn/
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Training Error: 0.145
TestEnor: 0225
Bayes Enor: 0210 J

0.30
L

0
g
° W
o o T-J T T T T
s 8§+
£ 3
<
2 w %
g 51 s
= P
N
8 2
= ° ——  TestErmor
- 10-0ld GV
g4 Training Error
————— Bayes Eror
g 4
T T T T T
0 5 10 15 20 25

Number of Neighbors

The Elements of Statistical Learning (2nd Ed.)
Hastie, Tibshirani, Friedman. §13.3 p463—

Inf2b - Learning: Lecture 4

Classification and nearest neighbours

Spectral Band 1

‘Spectral Band 2

‘Spectral Band 3

Predict land-usage from satellite data
KNN applied to 9 pixel patch in 4 spectral bands, with K=5

The Elements of Statistical Learning (2nd Ed.)
Hastie, Tibshirani, Friedman. §13.3 pd63—
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Tips on pre-processing data

Tips on pre-processing data

Generalisation and over-fitting

Wisconsin Diagnostic Breast Cancer (WDBC) data set How reasonable is this decision boundary?
2 10k T ’ T T 4 Oranges: http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
— 1 .. *° %o Lemons: 0.4 -1
£ g ¥
= 2 8r % ’ .
E g exomameo 0o o = o & ) . |
o 7 0.3 =
3] T 6 B 2 £
< = = 3 -
4 502 g o ©o
-2 ir 7 5 3 IJ..
1 1 1 o N =
8 10 s 10 01 g3 1
width [cm] . -
width/cm 0
different units same unit 0 g 1 -10 -5
compactness log(compactness) an
= Standardise features unless understand units Linear scale Log scale -
= Consider transformation, e.g. log-transform.
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Poor generalisation: stories How reliable is the error rate? Cross validation
@ Error rate on training data set: SO
~ 0 ‘ N N
In a competition: can bel SA’ simat lisati . 3 4—fold CV
http://blog. kaggle. con/2012/07/06/ = useless to estimate generalisation error {
the-dangers-of-overfitting-psychopathy-post-mortem/ @ Error rate on a test data set (exclusive to the training set)
e How large should the data set be? 5 ::>
o How should it be collected? 3 ]
: ./ Sampling
Cross validation is used to estimate generalisation error { y
: e (swapping test and training data sets) h ISy Data set
Classic stories: o . Training data set
http://neil.fraser.name/writing/tank/ o k-fold cross validation (k-fold CV) Population Validation data set
(2-fold CV is sometimes called "holdout method") Test data set
o leave-one-out cross validation (LOO CV)
http://www.j-paine.org/dobbs/neural_net_urban_legends.html
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Summary

Further reading s

Labs

o Classification with similarity based methods
Represent items as feature vectors

Compute distances to other items and sort

Assign a class label to the feature vector

k-NN: an example-based approach that classifies a test
point based on the classes of the closet training samples
o Larger k results in a smoother solution

o Decision boundaries/regions, Voronoi diagram

o Generalisation
e Overfitting: tuning a classifier to closely to the training
set can reduce accuracy on the test set
o Compare methods on held out data
(validation set)

o Estimate final performance on really new data
(test set)
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@ L. Jiang, Z. Cai, D. Wang, S. Jiang, “Survey of Improving
K-Nearest-Neighbor for Classification,” Fourth International
Conference on Fuzzy Systems and Knowledge Discovery (FSKD
2007)

@ M.R. Abbasifard, B. Ghahremani, H. Naderi, “A Survey on Nearest
Neighbor Search Methods,” International Journal of Computer
Applications (0975 — 8887), Vol.95, No.25, June 2014.

Hand-Drawn Voronoi Diagrams

Roberto Tamassia, “Introduction to Voronoi Diagrams,”
Lecture notes of C.S. 252, Computational Geometry, University of
Brown, 1993.

Steven Fortune, “A sweepline algorithm for Voronoi diagrams,”
Algorithmica 2, 153 (1987).
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04th, 05th Feb. Lab-3 K-means clustering and PCA

11th, 12th Feb. Lab-4 K-NN classification
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Lecture 5: Introduction to statistical pattern recognition
and Optimisation

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation

Today's Schedule

Motivation for probability

@ Probability (review)

© What is Bayes’ theorem for?
© Bayes decision rule

@ More about probability

© Optimisation problems

Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation

In some applications we need to:

o Communicate uncertainty
@ Use prior knowledge
@ Deal with missing data

(we cannot easily measure similarity)

Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation 3

Warming up

Warming up (cont.)

Rules of Probability

@ Throwing two dices

o Probability of {1,1} ?
o Probability of {2,5} ?

@ Drawing two cards from a deck of cards
o Probability of {Club, Spade}?

o Probability of {Club, Club}?

Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation

@ Probability that a student in Informatics has eyeglasses?
o Probability that you live more than 90 years?

@ When a real dice is thrown, is the probability of getting
B

Empirical probability

aka:
relative frequency
experimental probability

for a sample set drawn from
a population

Theoretical probability vs.

Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation

Random variables | Events/values
X {x,%, . ox}
Y .y, ym}
Product Rule:
P(Y=y;,X=x) =P(Y=y;|X=x)P(X=x)
= P(X=xi|Y=y;) P(Y=y)

Abbreviation:
P(Y,X) =P(Y|X)P(X)
=P(X]Y)P(Y)

X and Y are independent iff:
P(X,Y) = P(X)P(Y)

PX[Y) = P(X), P(Y|X)=P(Y)
Introduction to statistical pattern recognition and
Inf2b - Learning: Lecture 5 Optimisation 6




Rules of Probability (cont.)

Example: determining the sex of fish

Example: determining the sex of fish

Sum Rule:

Histograms of fish lengths (Ng = Ny = 100)

Lengths of male fish

Relative frequencies of fish length

Lengths of male fish

.. 40 04
P(X=x) = Y _ P(X=x,Y=y) 2 g
J=1 220 02
A o °
Abbreviation: i 0 [ N
P(X) = > P(X,Y) 0 5 10 15 20 0 5 10 15 20
v Length /cm Length / cm
RHS:  Mariginalisation of the joint probability over Y. Lengths of female fish Lengths of female fish
X . e 40 0.4
LHS:  Marginal probability of X. 3 g
Q ped
N 220 L 0.2
Application: g %
w o
P(X) = D> P(X|Y)P(Y) 0 0
0 5 10 15 20 0 5 10 15 20
Y Length / cm Length / cm
‘ ) - (NB: different example from the one in Note 5.) ) )
Introduction to statistical pattern recognition and ntrodiiction to statistical pattern récognition and Introduction to statistical pattern recognition and
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Example: determining the sex of fish Fish questions Fish questions
Possible decision boundary Relative frequency of male fish length:  P(x| M)
. . Relative frequency of female fish length: P(x|F
Lengths of }nale fish @ How to classify 4cm, or 19cm fish? q Y g (x| F)
. 0.4 : o How to classify 10cm fish? Given a fish length, x, is it sensible to decide as follows?
(5] .
L 2] ! Longh of bl If P(x|M) > P(x|F) = male flsh
s i o4 ' If P(x|M) < P(x|F) = female fish
0 ; 02 H
0 5 10: 15 20 o ) ‘
Length¥ cm 0 5 10} 15 20 Lengths of fnale fish
1 Length¥ cm 0.4 :
1 . 1 g
Lengths of fgmale fish Lengths of f§male fish £ o2 i
.04 1 & 04 ! k3 . ‘
g
g ! &2 ! 0 5 10} 15 20
L 0.2 ! & 4 Lev‘g:h: cm
2 ° 5 10} 15 20 Lengths of fgmale fish
0 Lengthy cm . 04 :
0 5 10} 15 20 £ o2 '
Length¥ cm & .
Introduction to statistical pattern recognition and Introduction to statistical pattern recognition and 0 5 ) M’;roducuon td 2tatistical pafidrn recognition and
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o o 0
Fish questions (cont.) Bayes' Theorem LIL An Eflay towards Joloing @ Prablem in
the Doétrine of Chances. By the late Rev.
i Mpy. Bayes, F.R.S. communicated by Mr.
? — ohsid “
How to obtain P(Y'[x)? (where Y = {F. M}) P(E | H) P(H) Price, in a Letter to John Canton, A. M.
P(H|E) = “=L ) ERS
@ The product rule: P(E) e
P( YV X) = ’D( Y ‘ X) ’D(X) Read D;f— 23, J Now fend you an effay which I have
179 found among the papers of our de-
= P(X ‘ Y) P( Y) ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well dcfervesfI tg be preferved.
i ilities: Experimental philofophy, you will find, is nearly in-
@ Posterior prObabl;;“es-Y Py tergeﬂcd in the?ubje&i i(t_;yafnd e 'l?is acioum there
7)( feems to be particular reafon for thinking that a com~
P ( Y | X ) = ( | P ) ( ) x P (X ‘ Y) P ( Y) munication gf it to the Royal Society cannot be im-
X roper.
( ) 4 I?Iee had, you know, the honour of being a mem-
i.e ber of that illuftrious Society, and ;las much eﬂ;em—
h ed by many in it as a very able mathematician. Inan
P ( M ‘ ) P(X ‘7/\”) P(M) P ( ‘ M ) P ( M ) introdution which he has writ to this Effay, he fayf,
Y P(x) - " that his ;lieﬁgn at firft in thinking Zg the fubj}e‘&. o§ it
- was, to find out a method by which we might judge
P(x| F) P(F) Thomas Bayes (7) (1702? 1761) concerning the probability that an event has to hap-
P (F ‘ X ) - - x P (X |F ) P (F ) pen, in given Cil’CllmﬁﬂflCCS? upon fuppofition that we
P(x) http://wuw.york.ac.uk/depts/maths/histstat/bayespic.htm know nothing concerning it but that, under the fame
circumftances, it has happened a certain number of
f B . inf B . times, and failed a certain other number of times.
Introduction to statistical pattern recognition and ¢ ayesian inrerence, ayeSIarlLtroduction to statistical pattern recognition and Introduction to statistical pattern recognition and
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‘Bayesian’ philosophy refs

Bayes decision rule

Inferring labels for x=11

Non-examinable!

Bayes’ paper:
http://www.jstor.org/stable/105741
http://dx.doi.org/10.1093/biomet/45.3-4.296 (re-typeset)

Cox’s paper:
http://dx.doi.org/10.1119/1.1990764
http://dx.doi.org/10.1016/50888-613X(03)00051~3 modern

commentary

MacKay textbook, amongst many others

Introduction to statistical pattern recognition and
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Class C={1,...,K}; Ck to denote C=k;

Choose the most probable class: (maximum posterior class)
kmax = argmax P(Cy|x) = argmax P(x | Cx) P(Cy)
K

keC

where ) likelihood ~ prior
posterior e e e e,
ST _ P(x|G) P(G) . P(x]G) P(C)
PGI) =~ B —
= (x) Zj:l P(x| G) P(G)

@ It is known this decision rule gives minimum error rate.
(We will discuss this in Lecture 10)
@ Also called
o Minimum error (misclassification) rate classification
(PRML C. M. Bishop (2006) Section 1.5)
e Maximum posterior probability (MAP) decision rule

Introduction to statistical pattern recognition and
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input features X = x

@ Equal prior probabilities:

P(x =11| M) P(M)

PIMIx=11) = =577
B P(x = 11| M)P(M)
= P(x = 11| M) P(M) + P(x = 11| F)P(F)
0.14-05 0.14
= 01405+ 010-05 — 024 ~ 0¥
N P(x = 11| F) P(F)
POFIx=11) = 50 —31Tw) P(M) + P(x — 11| F) P(F)
_ 0.10-0.5 _010 e
0.14-05+0.10-05  0.24

— classify it as male

NB: For classification, no need to calculate P(x = 11).
Introduction to statistical pattern recognition and
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Inferring labels for x=11 (cont.)

Likelihood vs posterior probability

Likelihood vs posterior probability (cont.)

@ Equal prior probabilities:

P(M|x=11)
P(F|x=11)

P(x=11|M)P(M) 0.14-05
P(x=11|F)P(F) ~ 010-05

Classify it as male:

@ Twice as many females as males: (ic, P(V)

P(M|x=11)
P(F|x=11)

P(x = 11| M) P(M)
P(x = 11| F) P(F)

~0.14-1/3
7 0.10-2/3

=07

Classify it as female

Introduction to statistical pattern recognition and
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1/3, P(F) = 2/3)

_ Px|IG)P(C)  P(x|C) P(Ch)
PAR=""00) = 55, Pl 6) P(C)
P(M):P(F)=1:1
P(x|Cx) % O“; |
(Glx) 2

10 15 20
Introduction to statistical pattern recognition and
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25

P(x|CIP(C) _  P(x| ) P(Ch)
P(x) Y P(x1G) P(G)
P(M): P(F)=1:4

0.25 T T T

P(Cilx) =

P(x|C)

P(Ck|x)

0 5 0 5 20
Introduction to statistical pattern recognition and
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Some more questions

More about probability

Independence vs zero correlation

o Assume P(M) = P(F) =0.5
@ What is the value of P(M | X =4)?
@ What is the value of P(F | X =18)?
@ You observe data point x=22.
To which class should it be assigned?

@ Discuss how you could improve classification performance.

o What if we increase the number of histogram bins?

o What if we increase the number of samples?

e What if we measure not only fish length but also weight?
(How can we estimate probabilities?)

@ It seems that we can estimate P(C|x) directly from data,
right?

Introduction to statistical pattern recognition and
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o Conditional probability of three variables

P(Y,Z|X)P(X)

P(X,Y|2Z)= P(Z)
P(x|v.2) = PELL 0 PXLY)
P(Z1Y)
@ Chain rule
P(X1, Xz, ..., Xn) = P(X1)P(Xa| X1)P(X3| X1, Xz) - - -
S P(Xn| Xy, .o Xna)
Prove!

Introduction to statistical pattern recognition and
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o Independence vs Pearson correlation coefficient p = 0
If X and Y are independent, pxy = 0.
The converse is not true.

Se€ nttps://en.wikipedia. org/wiki/Correlation_and_dependence

E.g. (X,Y)=(-1,0),(0,-1),(0,1),(1,0), each of which

occurs with a probability of %.

P(X=-1)P(Y=0)=1/4-1/2=1/8

P(X=0)P(Y=-1)=1/2-1/4=1/8
P(X=0)P(Y=1)=1/2-1/4=1/8
P(X=1)P(Y=0)=1/4-1/2=1/8

pxy =0, but P(X,Y) # P(X)P(Y)

i.e., not independent

Introduction to statistical pattern recognition and
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Optimisation problems we've seen

Optimisation problems : other examples

Types of optimisation problems

@ Bayes decision rule (MAP decision rule)
kmax = argmax P(Cy|x)
kec

@ K-NN classification
c(z) = arg max Z djc
(x,¢) € Uk(2)
where Ug(z) is the set of k nearest training examples to z.
@ K-means clustering
min E

{me3 1 LN
where E = NZZZMHM — my ’

k=1n=1
o Dimensionality reduction to 2D with PCA
max Var (y) + Var (z)

subject to [ju]|=1,|lv|=1,u Lv
Introduction to statistical pattern recognition and
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@ Find the shortest path between Edinburgh and London
o Find the cheapest flights from Edinburgh to Tokyo

@ For UG4 projects, find the optimal allocation of
supervisors and students under given constraints (e.g. no
supervisors can take more than five students.)

Introduction to statistical pattern recognition and
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@ Continuous vs Discrete optimisation

@ Unconstrained vs Constrained optimisation

https://neos-guide.org/optimization-tree
https://en.wikipedia.org/wiki/Optimization_problem

Introduction to statistical pattern recognition and
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Continuous & unconstrained optimisation problems

Optimisation of a quadratic function of one variable

Optimisation of a quadratic function of two variables

Minimisation of objective function

min f(x)

x

wherex € R?, f: RP - R

Optimal solution, x* : f(x*) < f(x) for all x € RP, satisfies !

f y
OFX) _ o fori=1.....D

2
O 24 bx+ ( +b> ca g
ax X+c=al|lx+—) ——+c¢
) — —= =2ax+cy+d=0
Vector rerpresentation: 2a 4a Ox 4
-
f (x) f (x) o Approach 2: Jg =2by+cx+e=0
VF(x) = -0 A Iy Dy
Ox1 Oxp Local mini (X)
ocal minimum = 2ax + b =0
. Global minimum dx 2a ¢ X\ _ —d
where 0 = (0,.. ., 0) b c 2b y —e
@ Solution: x = ~%
T This is not a sufficient condition, but a necessary condition. a
Introduction to statistical pattern recognition and Introduction to statistical pattern recognition and Introduction to statistical pattern recognition and
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Optimisation problem:
min f(x)
f(x)=ax®*+bx+c, a>0

@ Approach 1:

@ Optimisation problem:
min g(x,y
{ay} (ey)
glx,y)=ax® + by +cxy +dx +ey +f
where a >0, b >0, c? < 4ab

Least square error line fitting

Least square error line fitting (cont)

Iterative optimisation

o Optimisation problem

1 N
min & > (9 = ya)?

o Iterative optimisation method
! =1 o .
" o Optimisation problem @ Step 1: Choose an initial point X, and make t = 0.
Jn=2ax, +b 1 ) y @ Step 2: Choose x;; based on an update formula for x;.
T,'dn N Z(X” = Xn) @ Step 3: t < t+ 1 and go to step 2 unless stopping
- x =t criterion is met.
N
OE 2 X, =cy,+d . . L
BN Z(axn +b—y.)x, =0 " Yn Example of iterative optimisation methods
n=1 . . H
9E 2 Find the solution x o Gradient descent
— = — = Xei1 = X¢ — f(x where n > 0
b N ;(axn +b—y,)=0 t+1 ¢ —nVI( )|><:><t ]
o Conjugate gradient method
= See the lecture note for details. @ Newton's method
Introduction to statistical pattern recognition and Introduction to statistical pattern recognition and Introduction to statistical pattern recognition and
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Exercise:

Many optimisation problems do not have a closed-form
solution! (e.g. K-means clustering)




Gradient descent

Summary

Mid-course feedback

Xer1 = X — 1 V()] where > 0

X=Xt

fix)

Things to consider

- Choice of np (i.e. learning parameter)
- Local-minimum problem

Introduction to statistical pattern recognition and
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@ Bayes' theorem for statistical pattern classification
@ Posterior is proportional to prior times likelihood

@ P(x) can be obtained with marginalisation of P(x|C)P(C)

Bayes decision rule achieves minimum error rate
classification

Discuss possible difficulties of applying the Bayes'
decision rule to real problems

@ Pattern recognition as optimisation problem

Most of optimisation problem does not have a
closed-form solution — Iterative optimisation method

Check the examples in slides, and try the exercises in
Note 5.

Introduction to statistical pattern recognition and
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Your Learn course webpage
— (on the left black tab) Have Your Say
— Mid-course feedback

Introduction to statistical pattern recognition and
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Inf2b - Learning

Lecture 6: Naive Bayes

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Inf2b - Learning: Lecture 6 Naive Bayes

Today's Schedule

Bayes decision rule (recap)

@ Bayes decision rule review
© The curse of dimensionality
© Naive Bayes

@ Text classification using Naive Bayes (introduction)

Inf2b - Learning: Lecture 6 | Naive Bayes

Class C={1,...,K}; Cx to denote C=k; input features X = x
Most probable class: (maximum posterior class)
P(x| G P(C)

kmax = argmax P(Cx|x) = argmax —p————>—
= AP = e PG

= argmax P(x|Cc)P(Ck)
K

where  P(Cy|x) posterior
P(x| Ck) likelihood
P(Cy) prior

= Minimum error (misclassification) rate classification
(PRML C. M. Bishop (2006) Section 1.5)

Inf2b - Learning: Lecture 6 Naive Bayes 3

Fish classification (revisited)

Fish classification (revisited)

Fish classification (revisited)

Bayesian class estimation:

P(x| G) P(Ck)

P(Cklx) = P(X)

o P(X‘ Ck) P(Ck)

Estimating the terms: (Non-Bayesian)

Ny

Priors: P(C=M) ~ NN
m + Ne

Likelihoods: P(x | C=M) ~ ”"X/(X)ﬂ o
M

NB: These approximations work well only if we have enough data

Inf2b - Learning: Lecture 6  Naive Bayes

P(x| G) P(Ck)

P(Ck‘X): P(X)

0.05 |

Length [em]

Inf2b - Learning: Lecture 6  Naive Bayes.

P(x] G) P(G)
P(x)

P(Ck‘)():

P(x| G

Length [cm

Inf2b - Learning: Lecture 6  Naive Bayes 6




How can we improve the fish classification?

More features!?

Avoiding the Curse of Dimensionality

Lengths of male fish

Frequency
n N
o o

o
o
o

10 15 20
Length / cm

Lengths of female fish

N
o

Frequency
n
o

0
0 5 10 15 20
Length / cm
Inf2b - Learning: Lecture 6 Naive Bayes 8

Pix| G w "l 20)
, -

1D histogram: nc,(x1) 5
2D histogram: nc,(x1, x2)

3D cube of numbers: nc, (x1, 2, x3)

2100

100 binary variables, settings

(the universe is &~ 2% picoseconds old)
In high dimensions almost all n¢, (xi,...,xp) are zero

= Bellman'’s “curse of dimensionality”

Inf2b - Learning: Lecture 6  Naive Bayes 9

Apply the chain rule?
P(x| Cx)= P(x1, %2, ..., xp | Ck)
= P(x1|Cy) P(x2|x1, C) P(x3]x2, x1, Ci) P(xa|x3, X2, x1, Cic) - - -

o P(xa-1|Xa-2, -+, X1, G) Pxolxp-1, .- x1, Ci)
Solution: assume structure in P(x | Cy)

For example,
@ Assume x,41 depends on x4 only
P(x| Cx) = P(x1|Ck)P(xa|x1, Ck)P(x3|x2, Ck) - - - P(xp|xp-1, Ck)

@ Assume x € RP distributes in a low dimensional vector
space
e Dimensionality reduction by PCA (Principal Component
Analysis) / KL-transform

Inf2b - Learning: Lecture 6  Naive Bayes 10

Avoiding the Curse of Dimensionality (cont.)

Example - game played depending on the weather

Weather data - how to calculate probabilities?

o Apply smoothing windows (e.g. Parzen windows)
o Apply a probability distribution model (e.g. Normal dist.)

@ Assume xi, ..., xp are conditionally independent given

class

= Naive Bayes rule/model/assumption
(or idiot Bayes rule)

P(X17X27 ce 7XD|C;<) = P(xl\Ck) P(X2|Ck) ce P(Xplck)

= H P(Xd‘ck)

=1

Q

@ Is it reasonable?

Outlook Temperature Humidity Windy Play
sunny hot high false NO
sunny hot high true NO

overcast hot high false YES
rainy mild high false YES
rainy cool normal false YES
rainy cool normal true NO

overcast cool normal true YES
sunny mild high false NO
sunny cool normal false YES
rainy mild normal false YES
sunny mild normal true YES
overcast mild high true YES
overcast hot normal false YES
rainy mild high true NO

P(O, T, H, W | Play) P(PI
P(Play| 0, T, H, w) — PO T H. W| Play) P(Play)

P(O, T,H, W | Play) P(PI
P(Play | O, T, H, W) — (O, T,H, W|Play) P(Play)

P(O, T,H, W)
If we use histograms for this
4D data: I7P/é,y(o7 T,H, W)
Outlook Temp. Humidity ~ Windy
sunny h9t high true
overcast | X | mild [ x X
. normal false
rainy cool

# of bins in the histogram =3 x 3 x2x2 =36
# of samples available = 9 for play:yes, 5 for play:no

Often not, of course! P(O, T,H, W)
Although it can still be useful.
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Weather data - tree representation Applying Naive Bayes Weather data summary
o ol Counts
4 =t Outlook Temperature Humidity Windy Play
_— v N v N Y N Y N|[Y N
/ 1 \ © | ) P( ) sunny 2 3 |[hot 2 2] high 3 4|f 6 2|9 5
e, flﬁ P(O, T,H, W | Play) P(Play overc 4 0| mild 4 2|nom 6 1|t 3 3
e P(Play | O, T, H,W) = P(O, T,H, W) rany 3 2| cool 3 1

fcaneant] feanrant [opemt
Humidity [ 1o ot ot et [ ! o fomnt [t
Windy ’_L‘u n’l_‘n _u’_Lu nrl—\. _U’_Lﬂ n’l_‘n M‘L«, |VA_‘(» H‘L‘ n’l_‘u _M_L‘n mx—m «;J‘\n (»’X_‘u m‘Ln \’A_‘u H_L‘n _n’x_‘u !

LU L L S L L SR L L O L L S L 1 R L o L L L

om0 h m e
Humidity [T 1o o ot ol [ I o [ !
Windy V—L\ ul—\n o ’_Lu |’A_‘n o r—Lu n’l_‘(» o r—Lﬂ n’l_‘(» o r‘L“ n’l_‘u o r—Lﬁ (»’X_‘u o J‘w (»’X_‘u m—L. o ’l_‘u m—]—\n o A—M To

(UL L L L A L S S L L S S S U R A
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x P(O, T,H, W | Play) P(Play)
Applying the Naive Bayes rule,
P(O, T,H, W | Play) = P(O|Play) P(T|Play) P(H|Play) P(W|Play)

Inf2b - Learning: Lecture 6  Naive Bayes 15

Relative frequencies P(x|Play=Y), P(x|Play = N)

Outlook  Temperature Humidity Windy Play

Y N Y N Y N Y N [[P(Y) P(N)
s 2/9 3/5|h 2/9 2/5|[h 3/9 4/5][f 6/9 2/5]/9/14 5/14
o 4/9 0/5||m 4/9 2/5|n 6/9 1/5||t 3/9 3/5
r 3/9 2/5||c 3/9 1/5

Test example

Outlook Temp.
x= (sunny  cool high

Humidity Windy Play
true) ?

Inf2b - Learning: Lecture 6  Naive Bayes 16




Weather data summary (Ver.2)

Applying Naive Bayes

Naive Bayes properties

Counts

Play

Outlook

Temp.

Humidity

Windy

sunny overc rainy

hot mild cool

high norm

False True

Yes 9
No 5

2 4 3 ]2
3 0 2 |2

4
2

313
1| 4

6 6
1 2

3
3

Relative frequencies P(x|Play)

Play

P(Play)

Outlook

Temp.

Humidity

Windy

sunny overc rainy

hot mild cool

high norm

False True

Y 9/14
N 5/14

2/9 4/9 3/9
3/5 0/5 2/5

2/9 4/9
2/5 2/5

3/9
1/5

3/9 6/9
4/5 1/5

6/9 3/9
2/5 3/5

Test example

X =

Outlook  Temp.
('sunny  cool

Inf2b - Learning: Lecture 6

Humidity Windy Play
true) 7?7

high

Naive Bayes

Posterior prob. of "play” given x = (sunny, cool, humid, windy)

P(Play |x) o< P(x|Play) P(Play)

P(Play=Y |x)  P(O=s|Y)P(T=c|Y)P(H=h|Y)P(W=t|Y)P(Y)
ST Ry

P(Play=N|x) & P(O=s|N) P(T =c|N) P(H=h|N) P(W =t|N) P(N)
:xg % g g %~0.0206

Exercise: find the odds of play, P(play=Y|x)/P(play=N|x)

(answer in notes)
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Easy and cheap:
Record counts, convert to frequencies, score each
class by multiplying prior and likelihood terms

P(Cel x) ox (T3 PxalC) P(G)

Statistically viable:
Simple count-based estimates work in 1D

Often overconfident:
Treats dependent evidence as independent

Inf2b - Learning: Lecture 6  Naive Bayes

Another approach for the weather example

Another approach for the weather example (cont)

Another approach for the weather example (cont)

@ What about applying k-NN?

o Data representation (by quantification)

x
Il
—

W RRNNWHEWWNRRFENWWO
e ROWRININI RN R 0 W o~
IR STV CTSVENEN NIV O ) S o
— RFORHROOOHHOOOROS

ORI RHORORRROOT

N

Inf2b - Learning: Lecture 6

Outlook

sunny
overc
rainy

Temp.

hot
mild
cold

Humid.

high
norm

Windy

True
False

Play

Yes
No

OHOFRKFNRFENWFENW

Naive Bayes

o k-NN
@ Sorted distance between X(:,1:4) and x
rank dist. idx label rank dist. idx label
1 141 (7) Y 1 141 (8) N
2 141 (8) N 2 141 (12) Y
3141 (9) Y 3 200 (2 N
4 141 (1) Y 4 224 (1) N
5 141 (12) Y 5 224 (1) Y
6 200 (2) N 6 224 (9) Y
7 224 (1) N 7 224 (11) Y
8 224 (6) N 8 224 (14 N
9 224 (14) N 9 245 (3) Y
10 245 (3) Y 10 245 (4) Y
11 245 (4) Y 1 283 (6) N
12 245 (5) Y 12 300 (5 Y
13 265 (10) Y 13 3.16 (10) Y
14 265 (13) Y 14 316 (13) Y
where the values for Humidity were doubled
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o Correlation matrix for (O, T, H, W, P)

0o T H w P
o] 1.00000  0.33541  0.16903  0.00000 —0.17638
T | 0.33541 1.00000 0.56695 —0.19094 —0.19720
H | 0.16903 0.56695  1.00000  0.00000 —0.44721
W | 0.00000 —0.19094 0.00000 1.00000 —0.25820
P | —0.17638 —0.19720 —0.44721 —0.25820  1.00000

NB: Humidity has the largest (negative) correlation with Play.
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Another approach for the weather example (cont)

Exercise (past exam question)

Identifying Spam

@ Dimensionality reduction by PCA

1.5

A PayN
- e, =
9 o, Y
g 05
S A
g0 4
2 A. o,
S 05 A
el
& 4 ®. Lo
e, ®,
-1.5
5 45 -4 -35 3 25 2 -15

1st principal component
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Naive Bayes

EYBE mp My m3 my

The table gives a small dataset. Tick

o)

marks indicate which movies 3 chil- c v v
dren (marked c) and 4 adults (marked § ¢

a) have watched. The final two rows 2 v v
give the movies watched by two users a v VvV Y
of the system of unknown age. y; v /;

Apply maximum likelihood estimation of the priors and
likelihoods to this data, using the naive Bayes assumption
for the likelihoods. Hence find the odds that the test user
yi is child: P(y; = c|data)/P(y; = aldata) for i = 1,2.
State the MAP classification of each user.
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| got your contact information from your country's
information directory during my desperate search for
someone who can assist me secretly and confidentially
in relocating and managing some family fortunes.
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Identifying Spam

Identifying Spam

Identifying Spam

Dear Dr. Steve Renals, The proof for your arti-
cle, Combining Spectral Representations for Large-
Vocabulary Continuous Speech Recognition, is ready
for your review. Please access your proof via the user
ID and password provided below. Kindly log in to the
website within 48 HOURS of receiving this message
so that we may expedite the publication process.

Inf2b - Learning: Lecture 6  Naive Bayes

Congratulations to you as we bring to your notice, the
results of the First Category draws of THE HOLLAND
CASINO LOTTO PROMO INT. We are happy to in-
form you that you have emerged a winner under the
First Category, which is part of our promotional draws.

Inf2b - Learning: Lecture 6  Naive Bayes.

How can we identify an email as spam automatically?

Text classification: classify email messages as spam or
non-spam (ham), based on the words they contain

With the Bayes decision rule,

P(Spam|xy,...,x.) o< P(xq,...,x.|Spam)P(Spam)

Using the naiave Bayes assumption,

P(x1,...,x.|Spam) = P(x;|Spam) - - - P(x.|Spam)

Inf2b - Learning: Lecture 6  Naive Bayes

29

Summary

@ The curse of dimensionality
@ Approximation by the Naive Bayes rule

e Example: classifying multidimensional data using Naive
Bayes

@ Next lecture: Text classification using Naive Bayes

Inf2b - Learning: Lecture 6 Naive Bayes

Inf2b - Learning

Lecture 7: Text Classification using Naive Bayes

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://wuw.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
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Today's Schedule

© Text classification

© Bag-of-words models

© Multinomial document model
© Bernoulli document model
© Generative models

@ Zero Probability Problem

Inf2b - Learning: Lecture 7 Text Cl ion using Naive Bayes

Identifying Spam

Identifying Spam

Identifying Spam

| got your contact information from your country's
information directory during my desperate search for
someone who can assist me secretly and confidentially
in relocating and managing some family fortunes.

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

Dear Dr. Steve Renals, The proof for your arti-
cle, Combining Spectral Representations for Large-
Vocabulary Continuous Speech Recognition, is ready
for your review. Please access your proof via the user
ID and password provided below. Kindly log in to the
website within 48 HOURS of receiving this message
so that we may expedite the publication process.

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

Congratulations to you as we bring to your notice, the
results of the First Category draws of THE HOLLAND
CASINO LOTTO PROMO INT. We are happy to in-
form you that you have emerged a winner under the
First Category, which is part of our promotional draws.

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes




Text Classification using Bayes Theorem

How do we represent D7

BoW models: Bernoulli vs. Multinomial

o Document D, with a fixed set of classes C = {1,..., K}
o Classify D as the class with the highest posterior
probability:

P(D| C) P(Ck)

kmax = argmax P(C, | D) = argmax
gr (C|D) gr P(D)

= argmax P(D]| C) P(Ck)
K

@ How do we represent D 7

o How do we estimate P(D| Cy) and P(Cy) ?

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

@ A sequence of words: D = (X1, Xz, ..., X;)

computational very expensive, difficult to train

o A set of words (Bag-of-Words)
o Ignore the position of the word
o Ignore the order of the word
o Consider the words in pre-defined vocabulary V (D = |V/|)

Multinomial document model a document is represented
by an integer feature vector, whose elements indicate
frequency of corresponding word in the document

x= (X, ox0) % €N

Bernoulli document model a document is represented by a
binary feature vector, whose elements indicate absence or
presence of corresponding word in the document

b:(bh...,bD) b,E{Ol}

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 7

Document D: “Congratulations to you as we bring to your notice, the
results of the First Category draws of THE HOLLAND CASINO LOTTO
PROMO INT. We are happy to inform you that you have emerged a winner
under the First Category, which is part of our promotional draws. "

Term (w; € V) Multlnomlal (x¢ € No) Bernoulll_(bt €{0,1})
x = (x) b = (b)

bring 1 1
can 0 0
casino 1 1
category 2 1
congratulations 1 1
draws 2 1
first 2 1
lotto 1 1
the 4 1
true 0 0
winner 1 1
you 3 1

D=12 x=(1,0,1,2,...,1,3) | b=(1,0,1,1,...,1,1)
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Notation for document model

Discrete probability distributions - review

Classification with multinomial document model

o Training documents:

Class Documents
G | p...pD .. .Df)

Ce | DD D)

o Flattened representation of training data:

Documents |D; ... D; ... Dy
Class indicator | zix ... Zx ... Znk

Bernoulli distribution
Eg: Tossing a biased coin (P(H) =
k= {0, 1} 0:Tail, 1:Head is
P(k) = kp+ (1=k)(1=p) = p"(1-p)" "
Binomial distribution
Eg: Tossing a biased coin n times, the probability of
observing Head k times is

P = () (1)

Multinomial distribution

p), the probability of

Assume a test document D is given as a sequence of words:
(01, 02, ..., 0p) eV ={w,..., wp }
D

Feature vector: x = (xg - word frequencies, Y " x = n
t=1

Document likelihood with multinomial distribution:

HPWt‘Ck
Htl ¢! t=1

For classification, we can omit irrelevant term, so that:

P(x|Ck) = NB: P°=1 (P> 0)

where N = Ny +--- + N, Eg: Tossing a biased dice n times, the probability of o Xt
. = . ¢ P(x| Cy) o HP(Wt | C)*t = P(o1]|Ck) P(02|Ci) -+ P(on|Ck)
S 1 if D; belongs to class Cy x = (X1, X2, X3, Xa, X5, X6 ), Where x; is the number o _
ik = . L =
! 0 otherwise occurrences for face i, is n
! P(C P(C P(o;| C
o Test document : D n X X3 xa (Ci | x) o< P(C) (o] C&)
P(x) = P ,p1 A A I:Il
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Training of multinomial document model

Multinomial doc. model — example

Classification with Bernoulli document model

Features: x = (xq,...,xp) : word frequencies in a doc.

Training data set

Class Docs Feature vectors
T T
COTE A
G : = : :
1 1 1 1
o \a) o,
R m(wi), ..., m(wp)
P(Cl):Nl/N P(Wr‘cl)I ( )/51,...,!71(WD)/51
DR X(k) MO Q)
1 1 X1 - Xip
C : : =
I3 K Kk
o \aw) Lo
A X n(wa), . .., k(wp)
P(CG)=Ne/N| P(wi|Cy) s n(wa)/Sk -, m(wp)/Sk

Sk=30 m(we)

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

See Note 7!
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A test document D with feature vector b = (by, ..., bp)

Document likelihood with (multivariate) Bernoulli distribution:

D
P(b| C) = HP(bt\ck T 1BP (el Co) + (1= be)(1—P(we G
- t=1
= TI2 P(we| Gi)Pr(1—P(we| G))-2)
ﬁ)(Wr‘Ck)= nkl(vivt)

(fraction of class k docs with word w;)

In Classification,

P(Ci| b) o< P(Ci) P(b] Ci)

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 16




Training of Bernoulli document model

Bernoulli doc. model — example

Bernoulli doc. model — example (cont)

Features: b = (by,...,bp) : D =|V|, i.e. vocabulary
binary vector of word occurrences in a document

Training data set

Class Docs Feature vectors
T T T T
U LA A
G : : = : :
1 1 1 1
o \o )\ s,
R I’Il(Wl),”.,nl(WD)
P(G) = Ni/N| P(w|CG): ni(wa)/Ny,..., ni(wp)/Ny
3 3 k 3
A
Ck : : = :
K I3 K k
o o)\ s,
N R nk(wl),“.,nk(WD)
P(C)=Ni/N|  P(we|Ce): ni(wi)/Ni, ..., ni(wp)/ N
Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 17

Classify documents as Sports (S) or Informatics (/)

Vocabulary V:

wy = goal

w, = tutor
ws = variance
wy = speed
ws = drink

wg = defence
wy = performance
Wwg = field

D=|V|=8

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

Training data: (rows give documents, columns word presence)
1 1

BSport _

Bl —

OOHHMFHEFE OO0OO0OHOO
HFOHOF, HOOOFO
OCOO0O+HO HOHRHRFOO
HOOOO O OO
HFOOKRK HFHROFROR
OCOO0OHO HHFEFOOR

OCOoOO0O+HO O+HHFHOO
OCOHHOO OOHKFH

Estimating priors and likelihoods:
P(S)=6/11, P(l)=5/11
(P(we|S))=(3/6 1/6 2/6 3/6 3/6 4/6 4/6 4/6)
(P(well))=(1/5 3/5 3/5 1/5 1/5 1/5 3/5 1/5)

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 19

Bernoulli doc. model — example (cont)

Summary of the document models

Question

Test documents: b; = [ 10011101 } Multinomial doc. model | Bernoulli doc. model
A - Class| Doc feature vectors feature vectors
Priors, Likelihoods: P(S)=6/11, P(/)=5/11 D(k) Q) Q) Q) b(k) b(k) b(k)
(P(w|S))=(3/6 1/6 2/6 3/6 3/6 4/6 4/6 4/6) c 1 xl_ X1'1 X1'D 1 i P
P(well)) = ( 1 /5 1/5 1 1 ko N el : N Il : ' :
(Plwel)) = (1/5 3/5 3/5 1/5 1/5 1/5 3/5 1/5) w |\ () () (k) (k) (k) What's the approximate value of:
. Dy | \xy X1 - X1p by, by ... bip
Posterior probabilities: i i E i B P( “the” | C)
8 P(C)=—~ nw), ..., n nw), ..., n €
P(S 1) o P(S) [T Ib1eP(we] S) + (1—bue)(1— P S))] (CI= k(W) «(wp) K (wi) «(wp) _ .
=1 P(wlCy) m(wy) i (wp) nkwy) — nk(wp) (a) in the Bernoulli model
0(6(1><5x2x1x1x2x1x2> 5 5.6 x 1073 S 71 Si Ne " N
— [ S XX - X=oX=X=X=-X=]=— =5. —5 . . .
A2 63 22 3 3 3/ 891 Dsk Yeame(we) (b) in the multinomial model?
8 n
P(I1b1) o P(1) T [breP(we | 1) + (1= bae)(1—P(we | 1))] P(x| G o [ ] P(wel G = T Ploi Cu)
t=1
t=1 i=1
5 (1 2 2 1 1 1 2 1> 8 6
x—[ox=Xx=-X=-X=-X=-Xx-Xx=)=-——=93x10 D
11\5°5°5°5°5"°5 5" 5) 850375 _ _ B
. . P(b| G = H [beP(we| ) + (1= be) (1= P(we| Ci))] Common words, ‘stop words’, are often removed from feature
= Classify this document as S. t=1 vectors
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Generative models Generative models (cont.) Generative model — Multinomial document model
° Mo'dels.; th?t generate observable data randomly based on 01 03 03 - 0y | G
a distribution
PX) | X1,%2,X3, @ Spam mail generator
o Examples
o Coin tossing models Congratulations to you as we bring to your notice, ... Ck
Coin Generated data sequence 0, 0,05 0,05 05 0; 05 0y = [VI-sided dice
Fair coin (P(H)=P(T)=05) HT,T,H T,HH,T,... i S
Unfair coin (P(H)=0.7, P(T)=0.3) T,HHHHHT,H,... | ] ‘ P(W[|Ck)
P(OISpam) |
o Dice throwing models !
Dice Generated data sequence
Unbiased dice (P(X) =1/6, X € {L,....6}) | 2,4,3,5,3,6,5,5,4.6,...
Biased dice (P(X)) = (0.1,0.1,0.1,0.1,0.2,0.4) | 6,6,5,5,6,1,2,6,6.6,...
Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 24 Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 25 Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 26




Generative model — Bernoulli document model

Word relative-frequencies of spam emails

Generated word sequence example

Terms in Document Din C

(b b
4 A

T T T
Ck 0/1 0/1 0/1
------

P(wIC) P(wIC)
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# of spam emails: 169

to  0.0395032 from 0.00664282 ttp . 4

the 0.0383633 content 0.00644629 money 0.00345898
you 0.0267285 have 0.0059353 by 0.00338037
of  0.0257851 bank 0.0059353 or 0.00330176
and 0.0252349 usd 0.00581738 name  0.00322314
your 0.0222476 on 0.00554223  funds  0.00322314
in 0.0200857  we 0.00542432  was 0.00318384
i 0.0198892 it 0.00518848  type 0.00318384
this 0.0145828 are 0.00507056 s 0.00318384
a 0.0138752 transfer 0.00479541 0Oa 0.00314453
my 0.0132463 our 0.0047561 if 0.00310522
for 0.0132463 com 0.00467749 1 0.00310522
i 0.0112024 am 0.00467749  can 0.00306592

is
3d 0.0108879
with 0.00915845

account 0.00455957
unlocked 0.00424512

payment 0.002948
message 0.002948

will  0.00876538 20 0.0041665 address  0.00286938
that 0.00849023  email 0.00404858  us 0.00283008
as  0.00797925 please  0.00385205 his 0.00279077
me 0.00766479 not 0.00377344  contact 0.00279077
be 0.00703589 all 0.00377344  has 0.00271216
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of kin good your the part of with and atm to new from
which projects has the transfer my how 3d and with united
in in o beneficiary that died pathak id efforts has to studies
have my as can you the 3d you your with transfer will your
a your m and the your i is ve country user nokia the this for
i value banking an click confirm world i it me my country
is 2010 very below i and now until html of position http
here of mail following there be while the by for your willing
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Generative models for classification

Smoothing in multinomial document model

Multinomial vs Bernoulli doc. models

Model for classificatioFr)l COP(C
P(Ck\x) _ (X‘ k) ( k)

P(x) o P(x| Ci) P(Ck)

Model for observation --- generative model

K
P(x) = ZP(X|Ck)P(Ck)

01 03 03 = 0

T P(O)

P(C=Spam) * P(C=Ham)

P(OISpam) P(OIHam)
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@ Zero probability problem

D
P(x| Co) o< [] P(we| G = 0if 3j: P(w;|C) =0
t=1
N
P(we| G) = Doimy XitZik ni(wt)

th‘,/z‘l N | Xier Zik N oy mk(we)

@ Smoothing — a 'trick’ to avoid zero counts:

_ 1+ Z{\il Xit Zik _ 1+ nk(wt)
VIS Sz D+ Xy mwe)

Known as Laplace’s rule of succession or add one

smoothing.

P(w: | C)
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Multinomial Bernoulli

draw a words from | draw a document from
a multinomial distribu- | a multi-dimensional
tion Bernoulli distribution
Vector of frequencies Binary vector

Generative model

Document repre-

sentation

Multiple  occur- | Taken into account Ignored

rences

Document length | Longer docs OK Best for short docs
Feature vector di- | Longer OK Shorter

mension

Behaviour  with | P("the"|C,) & 0.05 P("the"|Cx) ~ 1.0
"the"

Non-occurring do not affect likelihood | affect likelihood

words in test doc
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Multinomial vs Bernoulli doc. models (cont.)

Document pre-processing

Exercise 1

Fig. 1 in A. McCallum and K.Nigam, “A Comparison of Event Models
for Naive Bayes Text Classification”, AAAI Workshop on Learning for Text
Categorization, 1998

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes

@ Stop-word removal
Remove pre-defined common words that are not specific
or discriminatory to the different classes.

@ Stemming
Reduce different forms of the same word into a single
word (base/root form)

o Feature selection
e.g. choose words based on the mutual information

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 34

Use the Bernoulli model and the Naive Bayes assumption for the
following.
Consider the vocabulary V' = {apple, banana, computer}. We have two
classes of documents F (fruit) and E (electronics). There are four
training documents in class F; they are listed below in terms of the
number of occurrences of each word from V' in each document:

o apple(2); banana(l); computer(0)

o apple(0); banana(l); computer(0)

o apple(3); banana(2); computer(1)

o apple(1); banana(0); computer(0)
There are also four training documents in class E:

e apple(2); banana(0); computer(0)

apple(0); banana(0); computer(1)
apple(3); banana(l); computer(2)
apple(0); banana(0); computer(1)
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Exercise 1 (cont.)

Exercise 2

Exercise 2 (cont.)

Write the training data as a matrix for each class, where each row
corresponds to a training document.

Estimate the prior probabilities from the training data

For each class (F and E) and for each word (apple, banana and
computer) estimate the likelihood of the word given the class.

Consider two test documents:

© 00 ©

e apple(1); banana(0); computer(0)

e apple(l); banana(l); computer(0)
For each test document, estimate the posterior probabilities of each
class given the document, and hence classify the document.
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Use the Multinomial model and the Naive Bayes assumption for the
following.
Consider the vocabulary V = {fish, chip, circuit}. We have two
classes of documents F (food) and E (electronics). There are four
training documents in class F; they are listed below;

e fish chip fish

e chip

e circuit fish chip

e fish fish
There are also four training documents in class E:

e circuit circuit

e chip circuit

e chip chip

e circuit

Inf2b - Learning: Lecture 7 Text Classification using Naive Bayes 37

@ Estimate the parameters of a multinomial model for the two
document classes, using add-one smoothing.

@ Consider two test documents:
e fish chip
e chip circuit chip circuit fish chip circuit
Classify each of the test documents by (approximately) estimating
the posterior probability of each class

© With reference to the test documents in the previous question,
explain why a process such as add-one smoothing is used when
estimating the parameters of a multinomial model.
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Exercise 3

Exercise 3 (cont)

Summary

Consider two writers, Baker and Clark, who were twins, and who
published four and six children’s books, respectively. The following table
shows the frequencies of four words, wizard, river, star, and warp, with
respect to the first page of each book, and the information whether the
book was a bestseller or not.

Words
Author |wizard river star warp | Bestseller
Baker 1 1 1 0 No
Baker 1 1 0 1 No
Baker 1 1 1 1 yes
Baker 1 1 0 0 No
Clark 0 1 0 1 No
Clark 0 0 2 1 No
Clark 0 2 1 2 Yes
Clark 1 1 1 2 No
Clark 0 1 2 2 Yes
Clark 0 1 2 1 Yes

Two unpublished book drafts, Doc 1 and Doc 2, were found after the
death of the writers, but it’s not clear which of them wrote the
documents.

Inf2b - Learning: Lecture 7 Text C using Naive Bayes

o Without having any information about Doc 1 and Doc 2, decide the most
probable author of each document in terms of minimum classification error, and
Jjustify your decision.

e The same analysis of word frequencies was carried out for Doc 1 and Doc 2,
whose result is shown below. Using the Naive Bayes classification with the
multinomial document model without smoothing, find the author of each

document.
[ wizard river start warp
Doc'1 2 I 0
Doc 2 1 1 2 1

@ In addition to modifications to the vocabulary, discuss two possible methods for
improving the classification performance.

0 Another document, Doc 3, was found later, and a publisher is considering its
publication. Assuming the Naive Bayes classification with the multinomial
document model with no smoothing, without identifying the author, predict
whether Doc 3 is likely to be a bestseller or not based on the word frequency
table for Doc 3 shown below.

[ wizard river start warp
Doc3 | 0 T 1 2

e Using the same situations as in part (d) except that we now know the author of
Doc 3 was Baker, predict whether Doc 3 is likely to be a bestseller or not.
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o Our first ‘real’ application of Naive Bayes

@ Two BoW models for documents: Multinomial and
Bernoulli

@ Generative models

@ Smoothing (Add-one/Laplace smoothing)

@ Good reference:
C. Manning, P. Raghavan and H. Schiitze, Introduction
to Information Retrieval, University Press. 2008.
See Chapter 13 Text classification & Naive Bayes

o As always:

be able to implement, describe, compare and contrast
(see Lecture Note)
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Today's Schedule

Discrete to continuous random variables

Real-valued distributions and Gaussians

@ Continuous random variables
© The Gaussian distribution (one-dimensional)
© Maximum likelihood estimation

@ The multidimensional Gaussian distribution

Inf2b - Learning: Lecture 8  Real-valued distributions and Gaussians 2

Fish example again:

Lengths of male fish Lengths of female fish

P(x|c)P(c)
P(x)

o What if the number of bins — oo ? (i.e. the width of bin — 0)

c* = arg max P(c|x) = arg max = arg max P(x|c)P(c)
c c c

o P(X = x|C) will be almost 0 everywhere!
o We instead consider a cumulative distribution function (cdf)
with a continuous random variable:
F(x) = P(X <x)
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Cumulative distribution functions graphed

Cumulative distribution function properties

Probability density function (pdf)

Lengths of male fish Lengths of female fish

0.25 0.25
0.2 0.2
g o.15 go.s
e £
" &
3 0.1 3 0.1
& &
0.05 0.05 |
0 g 0 g
0 5 10 15 20 0 5 10 15 20
Length / cm Length / cm
1 1
0.8 B 0.8
0.6 B 0.6
3 kS
3 H
0.4 4 0.4l
0.2 B 0.2 |
o L L 0
0 5 10 15 20 0 B 10 15 20

Length / cm Length / cm
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Cumulative distribution functions have the following properties:

Q@ F(—o0)=0;

Q F(o0)=1;

Q If a<b then F(a) < F(b).
To obtain the probability of falling in an interval we can do the
following:

Pla< X <b) = P(X<b)—P(X<a)
= F(b)—F(a)
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@ The rate of change of the cdf gives us the probability
density function (pdf) , p(x):

P = 5 F() = F(x)
F(x) = /7; p(x) dx

@ p(x) is not the probability that X has value x. But the
pdf is proportional to the probability that X lies in a small
interval [x, x + dx].

@ Notation: p for pdf, P for probability

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 6

pdf and cdf

pdf and cdf

The Gaussian distribution

The probability that the random variable lies in interval (a, b)
is given by:

Pla< X < b)=F(b)— F(a)

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians

The probability that the random variable lies in interval (a, b)
is the area under the pdf between a and b:
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@ The Gaussian (or Normal) distribution is the most
common (and easily analysed) continuous distribution

@ It is also a reasonable model in many situations (the
famous “bell curve”)

o If a (scalar) variable has a Gaussian distribution, then it
has a probability density function with this form:

1 —(x—n)?
2y _ L2)
p(x |, 0%) = N(x; p,0%) = = eXP< 57
NB: exp(f(x)) = e
@ The Gaussian is described by two parameters:

o the mean p (location)
o the variance o2 (dispersion)

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 9

Natural exponential function

Plot of Gaussian distribution

Another plot of a Gaussian

y = exp(—x%)

y = er(xt)

T~
_—~

exp(x)
&
exp(-x"2)
o
>

10 / 0.4
/
5 0
/
/ 0
0
-3 2 1 0 1 2 3 3 2 1 0 1 2
x x
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@ Gaussians have the same shape, with the location
controlled by the mean, and the spread controlled by the
variance

@ One-dimensional Gaussian with zero mean and unit
variance (1 = 0,02 = 1)

pal 3f Gaussian Distribution

% = ) ] [ T 2 3 4
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Properties of the Gaussian distribution

Facts about the Gaussian distribution

Central Limit Theorem

M) ()

202

pdfs of Gaussian distributions

- : T T T T 3
1.4 | b oo
1.2 i / N(x; p,0%)dx = 1
5 oir 1
Sl
ER lim N(x; p, 02) = 6(x — p
=0 1 Jim N, 0%) = 6(x = 1)
0.4 1 b (Dirac delta function)
0.2 7]
0

Real-valued distributions and Gaussians
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@ A Gaussian can be used to describe approximately any
random variable that tends to cluster around the mean
o Concentration:
o About 68% of values drawn from a normal distribution
are within one SD away from the mean
o About 95% are within two SDs
o About 99.7% lie within three SDs of the mean

02 03 04

00 01

Real-valued distributions and Gaussians

Inf2b - Learning: Lecture 8

@ Under certain conditions, the sum of a large number of
random variables will have approximately normal
distribution.

@ Several other distributions are well approximated by the
Normal distribution:

o Binomial B(n, p), when n is large and p is not too close
tolor0

o Poisson P,(A) when X is large

e Other distributions including chi-squared and Student's
T

@ The Wikipedia entry on the Gaussian distribution is good

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 15

Parameter estimation form data

Example: Gaussians

Example: Gaussians (cont)

o Estimate the mean and variance parameters of a Gaussian
from data {x1, %, ..., xn}

@ Sample mean and sample variance (unbiased) estimates:

H= N;Xn
= > G
= N—1Zl n— [
o Maximum likelihood estimates (MLE):
1 N
A = N;Xﬂ
~2 g A N2
Ow = N 2 (X" - NML)
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A pattern recognition problem has two classes, S and T.
Some observations are available for each class:

Class S |10 8 10 10 11 11

Class T \ 12 9 15 10 13 13

The mean and variance of each pdf are estimated with MLE.

S: mean = 10;
T: mean = 12;

variance = 1
variance = 4

1 (x — 10)?
p(X\S)fmeXP(— 1 )
1 (x —12)?
p(x|T) = T,z;em(— oW )
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Sketch the pdf for each class. cf. the histograms

p(x[S)

p(x)

0.1 p(x|T)

0 P
0 5 10 15 20
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Parameter estimation as an optimisation problem

ML estimation of a univariate Gaussian pdf

ML estimation of a univariate Gaussian pdf (cont)

o Given an observation (training) set of N samples:

@ How can we estimate the mean x and variance 2 of the
population?

@ Define the problem as an optimisation problem

Maximum Likelihood (ML) estimation:
max p(D | u, 0%)
po?

NB: ML is just a one criterion for parameter estimation
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Assumption:
Samples D = {x,}_, are drawn independently from the
same distribution (i.i.d.)

Likelihood:
p(D|p,0%) = p(xa, . oxw | 1, 0%) N
= p(xa | 0%) - plxw |, 0%) = [ [ plxa | 1, 0%)
= L(p,0%| D) =t

Optimisation problem:
Find such parameters 1 and o2 that maximise the
likelihood:
max L(u, 0% | D)
po?

Inf2b - Learning: Lecture 8  Real-valued distributions and Gaussians

The log likelihood:

NB: the natural log (In) is assumed

N
LL(p,0?| D) = InL(p,0?| D) = In [ [ p(xn | 1, 0?)
n=1
N
=3 Inploa 0%
n=1
N
1 — (%0 — p)?
:ZIn( exp( (x 2'u) ))
pr V2ro? 20
N
! N S G a)
= 75|n(27r)75|n (0 7;?
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ML estimation of a univariate Gaussian pdf (cont)

Examples of parameter estimation with MLE

The multidimensional Gaussian distribution

N 2
LL(p, 02| D) = 7g In(27) — g In(0?) — Z %

n=1
2 N
OLL(p, 0% D) Xo— b
o n = 202 N
1N
= II_N;XH
LL(p,0?| D) = (x0 — )
e = et g =0
n=1
1N
2 A2
=0 7N;(X,,7u)
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(red) when N=30

True pdf (black) and estimated pdf (red) when N=1000

1 o 1 2 3 5 3 n
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N = 1000

@ The D-dimensional vector x = (xy,...,xp)7 is
multivariate Gaussian if it has a probability density
function of the following form:

plxl 1. %) = (oo 0 (30— 1) = - ).

The pdf is parameterised by the mean vector
= (pi1,...,pup)" and the covariance matrix ¥ = (o).

@ The 1-dimensional Gaussian is a special case of this pdf

@ The argument to the exponential 3(x — p)" S~ (x — p)
is referred to as a quadratic form.

Inf2b - Learning: Lecture 8  Real-valued distributions and Gaussians 24

Covariance matrix

Covariance matrix (cont.)

Parameter estimation

@ The mean vector p is the expectation of x:
p = E[x]
@ The covariance matrix X is the expectation of the
deviation of x from the mean:

S = El(x— p)(x— )]
e X isa D x D symmetric matrixx. X7 =3
o = E[(xi — 1) — )l = E[(g — ) (xi = pi)] = 0 -

@ The sign of the covariance o helps to determine the
relationship between two components:
o If x; is large when x; is large, then (x; — 11;)(x; — p;) will
tend to be positive;
o If x; is small when x; is large, then (x; — ;) (x; — ;) will
tend to be negative.
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011 012 -+ -0 0 01D
021 02 <+ =+ °t 02D
Y=
Tii
Op1 Op2 -+ *** *** OpD
2 _
@ o; =0j

@ [X| = det(X) : determinant
e.g. for D=2,

a b

1=l =

c d

@ See dimensionality reduction with PCA in

Lecture Slides (3).
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‘:axd—bxc

Maximum likelihood estimation (MLE):

Inf2b - Learning: Lecture 8 Real-valued distributions and Gaussians 27

Correlation matrix

Spherical Gaussian

2-D Gaussian with a diagonal covariance matrix

The covariance matrix is not scale-independent: Define the
correlation matrix R of correlation coefficients pj;:

R =(py)
i
Pij = 5355
Pii = 1

o Scale-independent (ie independent of the measurement
units) and location-independent, ie:
p(xi, x;) = p(ax; + b, ex; + d) fora>0,c>0

@ The correlation coefficient satisfies —1 < p <1, and
plx,y) = +1
plx,y)=-1

fy=ax+b a>0
ify=ax+b a<0
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Surtace plotofpix,, x,)

Contouepot ot p, 5,
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Surtace plotof pix,, )

Contour pot ot i )

,/)//l//lll' xR
/I///;[II' "':" o=

(N
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2-D Gaussian with a full covariance matrix

Example of parameter estimation of a 2D Gaussian

Example (cont)

Surtace plotof pix,, ;)
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=
Il
=|
M=
3
M)
2\'-‘
Mz
t)
X
|
=
3

S HRARHEH SR
(5):(0)-6)-(2) |
o= e[ rrareas fea} - (1)
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N
/)’-:NZX”"’ OU*NZ xm_

<0600

1(5+5+7+7)=6
po=31+2+2+3)=2

e (R0

> g11 =

012 =

o |

(1) (1) +(=

N

022
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(=12 + (=12 +124+1%) =
1):04+1-04+1-1)=1
(-1)*+02+02+1%) =1

1
2
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Practical issues

Exercise

Exercise (cont.)

Parameter estimation of multivariate Gaussian distribution can
be difficult.

o Try Q3, Q4, Q5 in Tutorial 3
o Try Q3 in Tutorial 4
o Try Q4 in Tutorial 4, and
o Find =;! for i = 1,2.
o Find |X;| for i =1,2.
o Find the correlation matrix for each class.

o What the covariance matrix and pdf will be if the naive
Bayes assumption is applied?

Additional to Q3 in Tutorial 4:

The sample variance (o, ) is the maximum likelihood
estimate for the variance parameter of a one-dimensional
Gaussian. Consider the log likelihood of a set of N data points
xn being generated by a Gaussian with the mean x and

Xlyevos
variance o2.

L=tnp({x, - xw} i, 0?

s (U

Assuming that the mean g is know, show that that maximum
likelihood estimate for the variance is indeed the sample

R |n(27r)>

N =30 N = 1000 variance.
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Summary Today's Schedule
Inf2b - Learning Clasification with Gaussi
Gaussians . . . lassification with Gaussians
Lecture 9: Classification with Gaussians

@ Continuous random variable: cumulative distribution
function and probability density function

@ Univariate Gaussian pdf:
p(x| 1, 0%) = N(x; p, 0%) =
o Multivariate Gaussian pdf:
1 1
p(x|p,X) = WGXP (_E(x -

o Estimate parameters (mean and covariance matrix) using
maximum likelihood estimation

@ Try Lab-6 (next week)

) =7 (x — p)
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Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)
Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://wuw.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
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@ The multidimensional Gaussian distribution (recap.)

© Practical topics on covariance matrix
© Bayes theorem and probability densities
© 1-dimensional Gaussian classifier

© Multivariate Gaussian classifier

e Evaluation of classifier performance

Inf2b - Learning: Lecture 9

Classification with Gaussians 2




The multidimensional Gaussian distribution

Covariance matrix

Maximum likelihood fit to a Gaussian

o The D-dimensional vector x = (xi,...,xp)" is
multivariate Gaussian if it has a probability density
function of the following form:

Pl 4:%) = cgmrs o0 (30— 1075 - 0).

The pdf is parameterised by the mean vector p and the
covariance matrix X.

@ The 1-dimensional Gaussian is a special case of this pdf

o The argument to the exponential 1(x — ) TS (x — )
is referred to as a quadratic form, and it is always
non-negative.
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Covariance matrix (with ML estimation):

011 - 01D
Y= : : =

Op1 -** ODD

=S (0 — )0 — 1)

=|

where

e Symmetric: X7 =%, and ()T =x2?

@ Semi-positive definite: x" X x >0, and x'X"1x >0

@ cf: sample covariance matrix, which uses ﬁ

Inf2b - Learning: Lecture 9 Classification with Gaussians
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Tips on calculating covariance matrices

Properties of covariance matrix

Properties of covariance matrix

MATLAB is optimised for matrix/vector operations

S=VvDV'

M o rank(X)
1 T the number of linearly independent columns (or rows)
X == Xp — x, — p)7 Vit -+ Vip AL 0 Viin -+ Vip ° Y p
ooy N ; ( ",’Dmu)( "L UN) B . . . ) o the number of bases (i.e. the dimension of the column
1 XlT - IJ'T Vpi1 ' Vpp 0 Ap Vpr -+ VDD space)
:N(leﬂv----,XN*li) : rank(X) =D — V;: A\ >0
(o= xy—p’ =(wv1,...,vp) Diag(A1,...,Ap) (vi,...,vp)" Vig 1 vi Ly
1 (N x D)
== (X=My)T(X-M o . .
N( ‘WMN) ( et W) @ v; : eigen vector, \; : eigen value %[>0
r Yvi=\vy
x; Xi1, -y X1D M Uiy .oy D ! . rank(£) < D — J;: A\ =0
= = : = : - > |l =1
X MN o X220, vl iy + plxix) =1
W Xy XN, - - 5 XND WM M1y -5 1D S —TT2. )\
L o X =11 A =] =0
. _1
\MU*M =lwope =l X o Y2 o=
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Geometry of covariance matrix Geometry of covariance matrix Problems with the estimation of covariance matrix
X, Y, o |X| — 0 when
! 4 v o N is not large enough (when compared with D)
- /—h NB: |Z|=0for N <D
v, N 3, e There is high dependence (correlation) among variables
. (eg p(xi, %) = 1)
h=wn/vVA ]
~ @ X! becomes unstable when |3 is small.
2= y2/ V2 )
@ Solutions?
o X, ) o Share 3 among classes (=-linear discriminant functions)

Sort eigen values: A\ > X\ > ... > A\p
vy :  eigen vector of \;
v, :  eigen vector of \p

Var(yl) = /\1
Var(y2) = X2

_ T
n=vx,
_ T
2=V, X,

Inf2b - Learning: Lecture 9
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e Assume independence among variables = a diagonal
covariance matrix rather than a 'full’ covariance matrix.

Reduce the dimensionality by transforming the data into

a low-dimensional vector space (e.g. PCA).

o Another regularisation:

@ Add a small positive number to the diagonal elements
Y« X +el

Inf2b - Learning: Lecture 9 Classification with Gaussians 11




Shared covariance matrix among classes

Covariance matrix when naive Bayes is assumed

Bayes theorem and probability densities

@ How to estimate the shared covariance:
Yy=% forall k=1,...,K

X — T
@ Why is the following not good?
1Y -
Y= NZ(anl"')(anﬂ')
n=1
1&1
) — ) (x(0
=220 1)

Inf2b - Learning: Lecture 9 Classification with Gaussians

Y= ojj=0fori#j

plx| 1, 3) = W" (2 )78 - )

= p(x|p1, 011) - -+ p(xolpip, opD)

T { oo (05
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@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly) p(v)
p(x) = /P(Xa}/) dy

@ We may mix probabilities of discrete variables and
probability densities of continuous variables:

p(x. Z) = p(x1Z) P(2)
@ Bayes' theorem for continuous data x and class C:
p(x|C) P(C)
P(C|x) =
(€h) p(x)
P(Clx) o p(x|C) P(C)

Inf2b - Learning: Lecture 9 Classification with Gaussians 14

Bayes theorem and univariate Gaussians

Log probability ratio (log odds)

Example: 1-dimensional Gaussian classifier

o If p(x|C) is Gaussian with mean z and variance 0%
P(Clx) o< p(x|C) P(C) = N(x; 1, 0*) P(C)

For a classification problem of two classes: C; and G,

@ Two classes, S and T, with some observations:
Class S |10 8 10 10 11 11

(x — 1) G|x
IS S CE) i In (Cl\ ) nP(GIx) — In P(Go]x) ClssT[12 9 15 10 13 13
Voro2? 202 P(C|x) @ Assume that each class may be modelled by a Gaussian.
2 . . ;
o The log likelihood LL(x|C) is: _ 1 (x — p1) B (x ,uz) +ino? —Ino? The.estlma.ted.mean and varlz?nce.of each Pdf with the
) ) 2 o? o3 maximum likelihood (ML) estimation are given as follows:
LL(x|p,0®) = In p(x]| 11, 0?) i +InP(G) —InP(G) pS) =10 o*S)=1
1 - = 2(T) =
:§<,|n(2ﬂ),|ng2fw> w(T)y=12 o*(T)=4
o
o The log posterior probability In P(C|x) is: In P(Cl\x) “In P(Cg\x) >0 = G @ The following unlabelled data points are available:
X1 = 10, Xp = 11 X3 = 6
In P(C|[x) o< LL(x| C) + In P(C) , InP(Gi|x) =InP(Glx) <0 = G To which class should each of the data points be
1 _ .
L (Cinem) —no? = B L p(o) assigned? _ -
2 o2 Assume the two classes have equal prior probabilities.
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Gaussian pdfs for S and T vs histograms Posterior probabilities Example: 1-dimensional Gaussian classifier (cont)
P(8)=0.5, P(D)=0.5 o Take the log odds (posterior probability ratios):
0.5 M
p(TIx) P(SIX=x) _ 1 /((x—ps)* (x—pr)? s o
In 7P(T\X_x)7 5 70%3 7’7T +Inos —Inot
0.4l o (x15) 0. +InP(S)—InP(T)
ol M 0. @ In the example the priors are equal, so:
z 3
s B P(SIX=x) _ 1((x=ns) (x uT) ’ 2
0oL 0. | PTIX=x) 2 g‘% oz +Inos —Inot
_ 1 ((xf 10)? — (o127 In4>
0.1t b(xT) 0. 2 4
o . o If log odds are less than 0 assign to T, otherwise assign
0 5 10 15 20 20 to S.
:\ass'\ﬁcation with Gaussians 18 Inf2b - Learning: Lecture 9 Classification with Gaussians 19 Inf2b - Learning: Lecture 9 Classification with Gaussians 20
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Log odds

Example: unequal priors

Log odds

Test samples: x; =10, x; =11, x3 =16

@ Now, assume P(S) =0.3,P(T) = 0.7. Including this

Test samples: x; =10, x, =11, x3 =6

prior information, to which class should each of the above -
test data points, xi, x2, x3, be assigned? e =
i | @ Again compute the log odds: , // \‘\
el . \ i
g .
_ P(S|X =x 1/ (x— ps)? X — 2 AN
g o 4 |HM=_, #—#-&—Inaé—lna%— E 4 / AN B
3 P(TX=x) ~ 2\ o2 o2 v \
g 4 | +1InP(S) —InP(T) g/ \ i
E £ \
\
i | 1 —12)? | N\
‘ = x—102 = C22 g} snp(s) —np(T) = \
2 4 \
-10- d 1 (X _ 12)2 -10r ‘\‘ o
=—- [ (x—10)2 = *—""" —In4) +In(3/7 \
L L L L L L L L L 2 <(X ) 4 + ( / ) \
"’5 6 7 8 9 10 11 12 13 14 15 - 5 ‘S ‘7 ‘E ‘9 1‘0 1‘1 1‘2 1‘3 1‘4 15
x x
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Multivariate Gaussian classifier Example Training data
.
@ Multivariate Gaussian (in D dimensions): . .
1 1 @ 2-dimensional data from three classes (A, B, C). *
— Ty -1 . s = * .
p(x|p,X) = CIESEE exp (_E(x —p)'E T (x— N)) @ The classes have equal prior probabilities. T LI x
Y o o s X
@ 200 points in each class B P M
. . . . o 8% o eF Lt xELC Y
o Log likelihood: @ Load into Matlab ( n x 2 matrices, each row is a data oL *8%%%25 .‘;g;”s:ig& B T
D 1 1 _ oint) and display using a scatter plot: %0 ® G B S e
LL(x| g, B) = == In(27) = 5 In [ = S(x — )T (x — p) peint) play using P FEE AN Ty ¢ i
2 2 2 : 2 0 "®00,008 S URE )5, x
xa = load(’trainA.dat’); o o &o %:;o o9
@
. . xb = load(’trainB.dat’); % B” o ®00¢ o p
o Posterior probability: p(C|x) o< p(x|p, X)P(C) xc = load(’trainC.dat’); A R L o e
. °© %00 o
o Log posterior probability: hold on; O ¢ ‘
1 1 scatter(xa(:, 1), xa(:,2), ’r’, ’0’); oL
In P(C\x)cx—E(X—M)TZ’I(X—;A)—EIn\EH—In P(C) + const. scatter(xb(:, 1), xb(:,2), ’b’, ’x’);
scatter(xc(:, 1), xc(:,2), ’c’, ’*’);
o Try Q4 of Tutorial 4 % = E B 0 z i 0
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Gaussians estimated from training data Testing data Testing data — with estimated class distributions
4 4 ar-
2 21 Lo : 21 -
L RS A‘A@fﬁi R
o of a PPN AZE AAﬁﬁﬁ a a oF a
s el A8 .
WS NIRRT L PN
LB e ataeagTp SRR T oy
i o il 8T agl s h aen . i .
N U > I LU R S
Y S VI S
Ba, atptl s e
a AL SR SIS a
soay %, an L pe s
-6 -6 “ i -6
L L L L L L L L L
-8 -6 -4 -2 0 2 4 6 -8 -6 -4 -2 ] 2 4 6 -8 -6 -4 -2 o 2 4 6
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Testing data — with true class indicated

Classifying test data from class A

Classifying test data from class B

Inf2b - Learning: Lecture 9 Classification with Gaussians 30
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Classifying test data from class C

Result

Performance measures

o

Inf2b - Learning: Lecture 9 C with Gaussians 33

@ Analyse the result by percent correct, and in more detail
with a confusion matrix
Columns of a confusion matrix correspond to the
predicted classes (classifier outputs)
Rows correspond to the actual (true) class labels
Element (r, ¢) is the number of patterns from true class
r that were classified as class ¢
Total number of correctly classified patterns is obtained
by summing the numbers on the leading diagonal
@ Confusion matrix in this case
Predicted class
Test Data | A B C
Actual A |77 15 8
class B| 5 88 7
C| 9 2 89
@ Overall proportion of test patterns correctly classified is
(77 + 88 + 89)/300 = 254/300 = 0.85

Inf2b - Learning: Lecture 9| CI

with Gaussians

Accuracy (correct classification rate) =1 — error rate
Confusion matrix

Precision, Recall

F-measure (F1 score)

Precision x Recall
=20
Precision + Recall

@ Receiver operating characteristic (ROC)
NB: measures shown in grey are non-examinable
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Example: Classifying spoken vowels

The data

Vowel data — 10 classes

10 Spoken vowels in American English
@ Vowels can be characterised by formant frequencies —
resonances of vocal tract

o there are usually three or four identifiable formants

o first two formants written as F1 and F2

Peterson-Barney data — recordings of spoken vowels by
American men, women, and children
o two examples of each vowel per person
o for this example, data split into training and test sets
o children’s data not used in this example
o different speakers in training and test sets

(see http://en.wikipedia.org/wiki/Vowel for more)

Classify the data using a Gaussian classifier

Assume equal priors

Inf2b - Learning: Lecture 9 Classification with Gaussians 36

Ten steady-state vowels, frequencies of F1 and F2 at their
centre:

o |Y — "bee”

o IH— “big"

o EH — “red”

o AE — “at”

o AH — “honey”
o AA — “heart”
o AO — “frost”
e UH — “could”
o UW — "“you"
o ER — “bird"”
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Peterson-Barney F1-F2 Vowel Training Data

1500

]
1200
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Data and Gaussians for each class

Gaussians for each class

Decision Regions

Peterson-Barney F1-F2 Vowel Training Data

3500

000

2500

2000

F2/Hz

1500

- L L
o 200 00 500 500 1000 1200
F1/Hz
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Peterson-Barney F1-F2 Vowel Test Data

3500

1000

L — L
o 200 w00 500 00 7000
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]
7200
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y F1-F2 Gaussian Decision Regions

I’

500
F1/Hz
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Test data for class 1 (IY)

Test data for class 2 (1Y)

Confusion matrix

Peterson-Barney F1-F2 Vowel Test Data
ssoo-

Peterson-Bamey F1-F2 Vowel Test Data
w00

Predicted class
Iy IH EH AE AH AA AO UH UW ER| % corr.
T Y20 0 0 0 0 0 0 0 0 o0 100
IH| 0 20 0 0 0 0 0 0 0 0 100
=00 00 EH| 0 0 15 1 0 0 0 0 0 4 75
AE| 0 O 3 16 1 0 0 0 0 0 80
£ il EIE AH| 0 0 0 0 18 2 0 0 0 0 90
= = AA| 0O O 0 0 2 17 1 0 0 0 85
AO| 0 O 0 0 0 4 16 0 0 0 80
UH| o o 0o O 2 0 0 18 0 O 90
Uuw | 0 o0 0 0 0 0 0 5 15 0 75
oo o001 ER| 0 O 0 0 0 0 0 2 0 18 90
Total: 86.5% correct
20 r F‘S%DH . I oo 200 20 r F‘%z w0 00 200
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Exercise Summary
Inf2b - Learning
. . Lecture 10: Discriminant functions
© Consider estimating a covariance matrix ¥ from a data ° Co.varlance matrix )
set. Discuss what we could say about the data for the o Using Bayes' theorem with pdfs
following situations: o Log probability ratio (log odds) Hiroshi Shimodaira
o X is almost diagonal (i.e. ojj ~ 0 for i # ). @ The Gaussian classifier: 1-dimensional and (Credit: lain Murray and Steve Renals)

e |X|=0.
@ Give examples of data for each situation above.

@ Discuss the minimum number of training samples required
to have a covariance matrix that is invertible, i.e.
|X| # 0. (Hint: think D = 1 first, and D = 2, and so on.)

Inf2b - Learning: Lecture 9 Classification with Gaussians

multi-dimensional

Classification examples
Evaluation measures. Confusion matrix

Familiarise yourself with vector/matrix operations,
using pens and papers! (as well as computers)

Inf2b - Learning: Lecture 9 Classification with Gaussians

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
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Today’s Schedule

Decision regions

Gaussians estimated from data

@ Decision Regions

© Decision Boundaries for minimum error rate classification

© Discriminant Functions

Inf2b - Learning: Lecture 10 Discriminant functions

@ Recall Bayes' Rule:

C)P(C

P(Ck|X) _ p(X‘ k) ( k)

p(x)
Given an unseen point x, we assign to the class for which
P(Ck|x) is largest. (k™ = argmax, P(Cy|x))
Thus x-space (the input space) may be regarded as being
divided into decision regions Ry such that a point falling
in Ry is assigned to class C.

Decision region Ry need not be contiguous, but may
consist of several disjoint regions each associated with
class Cy.

@ The boundaries between these regions are called decision
boundaries. (Recall the examples of decision boundaries by
k-NN classification in Chapter 4)

Inf2b - Learning: Lecture 10 Discriminant functions 3
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Decision Regions

Placement of decision boundaries

Decision regions and misclassification

2
SRR iR g

Inf2b - Learning: Lecture 10

Discriminant functions 5

o Consider a 1-dimensional feature space (x) and two
classes C; and G,.

@ How to place the decision boundary to minimise the
probability of misclassification (based on p(x, C¢))?

— Ri— | +— Ry —

— Ri— | +— Ry —

Inf2b - Learning: Lecture 10 Discriminant functions 6

Confusion matrix Normalised version

In\Out G G In\Out G G
G| Nu N G| Pu Po P+ Pp=1
G| Nor Ny G| Pa Py Py + Py =1

P11 = P(x € Ra|G) = B,
Py = P(x € R1|G) = M,

2

1

P2 = P(x € Ra|Cy) = B2
Py = P(X € Rlez) = %
N

2

Ny =Nag+Nig, No=Noy+Noo, P(C1) =gz, P(Co)=

Ni+N;

Nii+ N

P(correct) = 7/\7:;\;2 = Pu P(G) + P2 P(C)
Nip+Np

P = REFRA b p(G) + Py P(C
(error) ENTA 12 P(G1) + P21 P(G)
=/ p(x|C1) P(Cr)dx + / p(x| &) P(Gp) dx
Ra JR1
Inf2b - Learning: Lecture 10 Discriminant functions 7

Minimising probability of misclassification

Minimising probability of misclassification (cont)

Discriminant functions

P(err0r|’R1,’R2):/Rp(x|C1) P(G) dXJr/Rp(X|C2) P(G) dx

1

o If there is x. € R; such that p(x|Ci)P(Ci) > p(xe| G)P(G),
letting R3 = Ro — {X.} and R} = Ry + {x.} gives
P(error| R}, R3) < P(error|R1, R2)

@ P(error) is minimised by assigning each point to the class with
the maximum posterior probability (Bayes decision rule / MAP
decision rule / minimum error rate classification).

@ This justification for the maximum posterior probability may be
extended to D-dimensional feature vectors and K classes

Inf2b - Learning: Lecture 10

Discriminant functions 8

Zo z

p(z,C1)

p(z,C2)

R R2

After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
X denotes the current decision boundary, which causes error shown in red,
green, and blue regions. The error is minimised by locating the boundary

at x,.

Inf2b - Learning: Lecture 10 Discriminant functions 9

@ We can express a classification rule in terms of a
discriminant function y,(x) for each class, such that x is
assigned to class Cy if:

Yi(x) > ye(x) VEF#k

o If we assign x to class C with the highest posterior
probability P(C|x), then the log posterior probability
forms a suitable discriminant function:

Yi(x) = Inp(x| Ci) + In P(Cx)

@ Decision boundaries between C, and C, are defined when
the discriminant functions are equal: yx(x) = yi(x)

@ Decision boundaries are not changed by monotonic

transformations (such as taking the log) of the
discriminant functions.

Inf2b - Learning: Lecture 10 Discriminant functions 10




Discriminant functions for Gaussian pdfs

Discriminant functions for Gaussian pdfs (cont)

Gaussians estimated from training data

o What is the form of the discriminant function when using
a Gaussian pdf?

1 1 _
p(x| px, Bi) = PO REE exp (‘5(’( — ) T (x - Mk))

o If the discriminant function is the log posterior probability:
Yi(x) = Inp(x| Ci) + In P(Cx)
@ Then, substituting in the log probability of a Gaussian
and dropping constant terms we obtain:

1 1
Ye(x) = =5 (x = ) TR (x = i) = 5 I (B + 0 PG
@ This function is quadratic in x

Inf2b - Learning: Lecture 10 Discriminant functions 11

@ To see if the function is really quadratic in x,
(x = 1) T (x — i)
= xTE % = S0 % = xS e+ 1] B

= XTE;lx — 2#[E;1x + ,uZ—E;luk

_ a1 a
o In2-Dcase let ' =A= ( au 312 )
D1 a2

x"EIx =xTAx
a1 a2 X1
(x %)
a1 ax X2
2 2
aix; + (312 + 321)X1X2 + axnX;

See Note 10 for details.

Inf2b - Learning: Lecture 10

Discriminant functions
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Decision Regions

Gaussians with equal covariance

Gaussians with equal covariance (cont)

Inf2b - Learning: Lecture 10 Discriminant functions 14

1 _ 1
Yx) =~ 3 0= ) 5 (i) — 3 In [ S +1n P(C)
1 _ _ _ 1
:—E(XTEk1x—2u[2klx+u2—2k1uk)—§ In|Z|+In P(Cy)
@ Consider the special case in which the Gaussian pdfs for

each class all share the same class-independent covariance
matrix: X, =3, VG

1
e(¥) = (BT x = Sl E e+ In P(G)

T
= W, X + Wko = WkpXp + * -+ + Wk1X1 + Wko

1
Wio = *EHZE g+ In P(Cy)
@ This is called a linear discriminant function, as it is a
linear function of x.

T_ ,Ty-1
where wy = p; X

Inf2b - Learning: Lecture 10 Discriminant functions

X2,

——
C1
x1
@ In two dimensions the boundary is a line
@ In three dimensions it is a plane

@ In D dimensions it is a hyperplane
(ie. {x| wix+wy = 0})

Inf2b - Learning: Lecture 10 Discriminant functions 16

Gaussians estimated from the data: X shared

Decision Regions: ¥ shared

Testing data (Non-equal covariance)

Inf2b - Learning: Lecture 10 | Discriminant functions 17

Decision regions: Equal Covariance Gaussians

Inf2b - Learning: Lecture 10 Discriminant functions
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Testing data (Equal covariance)

Results

Spherical Gaussians with Equal Covariance

@ Non-equal covariance Gaussians
Predicted class

Test Data | A B C
Actual A |77 15 8
class B| 5 88 7

cl9 2 89

@ Spherical Gaussians: X = o2l

1
= [Z=¢P =l=2

0-2
1 _ 1

yi(x) = *Q(X — ) TS (x — ) — 5l [Zx| +In P(Cy)
1

1
= 53 (x = ) (x = ) = 50 +1In P(Cy)

H . _ ~ 1
Fraction correct: (77 + 88 + 89)/300 = 254/300 ~ 0.85. yi(x) = ,?”X ~ il + 10 P(CY)
e Equal covariance Gaussians
Predicted class @ If equal prior probabilities are assumed,
Test Data | A B C yi(x) = —||x — Nk”z
Actual A | 80 146 The decision rule: “assign a test data to the class whose
class B | 10 9 0 mean is closest”
c| 8 6 86 ’
0 : 5 5 5 ; : The class means () may be regarded as class templates
Fraction correct: (80 + 90 + 86)/300 = 256,/300 ~ 0.85. or prototypes.
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Two-class linear discriminants Geometry of a two-class linear discriminant Exercise
@ For a two class problem, the log odds can be used as a ow i? .normal to the
single discriminant function: decision boundary @ Considering a classification problem of two classes, where
(hyperplane), h class i delled with a D-di ional G |
P(Ci|x) p(x| C1) P(CY) WX+ wo — 0. each class is modelled with a D-dimensional Gaussian
y(x)=1In P(G|x) =1In (x| G) P(Gy) * ) . distribution. Derive the formula for the decision boundary,
2 pX1 %2 2 y(X)= WX +w, =0 o If p is the point on the and show that it is quadratic in x.
=Inp(x|G) —Inp(x| Q)+ In P(C) — In P(&) hyperplane closest to the
) ] ) ) ) p w origin, then the normal @ Considering a classification problem of two classes, whose
o If the pdf is a Gau.ssua'n WIth the shared covariance matrix, distance from the discriminant function takes the form, y(x) = w'x + w.
we have a linear discriminant: hyperplane to the origin a Confirm that the decision boundary is a straight line
y(x) =wx+ wy il 2 is given by: when D = 2.
w and wy are functions of w1, po, 3, P(C1),and P(G). fwil wip  |w o Confirm that the weight vector w is a normal vector to
@ w is a normal vector to the decision boundary. ° S llell = wl — [lwl] the decision boundary.
L i h isi e . .
eta aTnd b be two gomts on the decision bToundary 0=w'p+w © Try Lab-7 on Classification with Gaussians
watwy=w'b+wy=0 = w'(a—b)=0 = ||w]|||p|| cos 0 + wp
ie. wl (a—Db) = [lwl/[[p]| & wo
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Summary Today's Schedule
Inf2b - Learning
Lecture 11: Single layer Neural Networks (1) @ Discriminant functions (recap)
o Obtaining decision boundaries from probability models o ) o
and a decision rule Hiroshi Shimodaira © Decision boundary of linear discriminants (recap)
@ Minimising the probability of error it: lain M Renal L . . Lo
. g P . Y . (Credit: lain Murray and Steve Renals) e Discriminative training of linear discriminans (Perceptron)
@ Discriminant functions and Gaussian pdfs
. e . . . Centre for Speech Technology Research (CSTR . )
@ Linear discriminants and Gaussians with equal covariance pSchooI of Inforgriatics ( ) @ Structures and decision boundaries of Perceptron
@ In next lectures, we will see discriminant functions trained University of Edinburgh . . o
with different criteria. http://www.inf.ed.ac.uk/teaching/courses/inf2b/ e LSE Training of linear discriminants
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04 © Appendix - calculus, gradient descent, linear regression
Jan-Mar 2020
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Discriminant functions (recap)

Linear discriminants for a 2-class problem

Decision boundary of linear discriminants

o @/ efe

(a) (b) ()

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 3

yi(x) = wy x + wig

yo(x) = W2TX + wao
Combined discriminant function:
y(x) = y1(x) = ya(x) = (w1 — wa) " x + (wig — wag)
= WTX + wo

Decision:

1, ify(x) >0,
2, ify(x)<0

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 4

@ Decision boundary:
y(x)=wTx+w=0

Dimension | Decision boundary
2 line wixg + waxo + wy =0
3 plane WXy + Waxo + waxs + wy =0
D hyperplane (322, wix;) + wo = 0

NB: w is a normal vector to the hyperplane

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 5

Decision boundary of linear discriminant (2D)

Decision boundary of linear discriminant (3D)

Approach to linear discminant functions

y(x) =wixi + waxa + wp =0 (xzzfmxl _ ™ hen wy # 0)
wo Wy
=0 Ci
T
/W (WI’WZ)i
lope = w,/w, !
L X,
\fore =1,

Inf2b - Learning: Lecture 11 | Single layer Neural Networks (1) 6

}’(X) = wixy + Waxo + w3xz + wy =0

X,

X,

Inf2b - Learning: Lecture 11 | Single layer Neural Networks (1) 7

Generative models : p(x|Cy)
Discriminant function based on Bayes decision rule
yi(x) = Inp(x|C) + In P(Ck)

| Gaussian pdf (model)

Yu(x) = 30— ) "B (6~ ) — 3 I [S5] +1n P(CY)
1 Equal covariance assumption
yi(x) =wx + wp
1 Why not estimating the decision boundary
or P(Cy|x) directly?

Discriminative training / models
(Logistic regression, Percepton / Neural network, SVM)

Inf2b - Learning: Lecture 11 | Single layer Neural Networks (1) 8

Training linear discriminant functions directly

Perceptron error correction algorithm

Geometry of Perceptron'’s error correction

o A discriminant for a two-class problem:

y(x) = y1(x) = ya(x) = (wq — Wz)TX+ (w10 — wao)

=w'x + wo
X2 1)
X
o ©
o X
o
e} X X
X
o X %
X
X1
)
£ o

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 9

ax)=w'x+w = w'x
where w = (wo,w")", x = (1,x7)7
Let’s just use w and x to denote w and x from now on!
1, ifa>0,
0, ifa<O

g(a): activation / transfer function

Y(X) :g(a(X)) = g( WTX) where g(a) :{

e Training set : D = {(xy, t1),..., (Xn, tn)}
where t; € {0,1} : target value

o Modify w if x; was misclassified

wt) W (- y(xi)) X (0<n<1)
NB: learning rate
(W) T = wx; + 1 (8 — y(x)) [[xil|?
Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 10

y(xi) = g(w'x;)

wt™) — w (- y(x))x  (0<n<1)

ti—y(x;) 8/
e

o
wTx = ||w||x|| cos6 © °

C0<><> &
o

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 11




Geometry of Perceptron’s error correction (cont.)

Geometry of Perceptron'’s error correction (cont.)

The Perceptron learning algorithm

y(xi) = g(w'x)

wle) w6 — y(x)) x;

Y\Xi
ti—y(x;) 0( z
0 -1

11 oo
wTx = ||wl|| x| cos @

Inf2b - Learning: Lecture 11

(0<n<1)
X,
o o
© o
X
) w
<o ° '
N\ 4
3 Xr
o © o
O
CO o O o
&

Single layer Neural Networks (1)

y(xi) = g(w'x;)
W(new) — w+n (f,' - y(xi)) Xi

tj *Y(Xi)

t;

w X =|w

x

S <
=

=]
(SN

x|| cos

Inf2b - Learning: Lecture 11

X,

(0<n<1)

o

0 M}new())
ANQX

o <

COOO
<&

Single layer Neural Networks (1)

Incremental (online) Perceptron algorithm:

N
Vsum = Veum + (ti
W <~ W + 1) Vaym

= y(xi)) xi

What about convergence?
The Perceptron learning algorithm terminates if training
samples are linearly separable.

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 14

Linearly separable vs linearly non-separable

Background of Perceptron

Character recognition by Perceptron

(a-1)

Linearly separable

Inf2b - Learning: Lecture 11

(a-2)

(b)

Single layer Neural Networks (1)

Linearly non-separable

W1
%@g}qf}%z X

(https://en.wikipedia.org /wiki/File:Neuron_Hand-tuned svg)

1940s

1957

(a) function unit

Warren McCulloch and Walter Pitts : 'threshold logic’
Donald Hebb : 'Hebbian learning’
Frank Rosenblatt : 'Perceptron’

Inf2b

Learning: Lecture 11

Single layer Neural Networks (1)

1.1

Inf2b - Learning: Lecture 11 | Single layer Neural Networks (1) 17

Perceptron structures and decision boundaries

Perceptron as a logical function

Perceptron structures and decision boundaries (cont)

w = (w
x = (1,x,.
where g(a)

Xz

@/%0 N
Xo X X2 P

NB: A one node/neuron constructs a decision boundary, which
splits the input space into two regions

Inf2b - Learning: Lecture 11

ifa>o0,
ifa<o0

xp>x —1

a(x)=1—x+x

= Wo+wixy+waxy

wo=1,w=—-1,

1

Single layer Neural Networks (1)

wy=1

NOT OR NAND XOR
X1 |y X1 | X |y X1 | X |y X1 | X |y
011 01010 0101 0/01|0
10 0|11 011 0|11
11011 1101 1101
11111 11110 11110

Question: find the weights for each function

Inf2b - Learning: Lecture 11

Single layer Neural Networks (1)

Inf2b - Learning: Lecture 11

Single layer Neural Networks (1) 20




Perceptron structures and decision boundaries (cont)

Perceptron structures and decision boundaries (cont)

Perceptron structures and decision boundaries (cont)

X2 X2
X2
_
<7 . &
/‘ \ / X1 X1
Xo X1 X2
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Problems with the Perceptron learning algorithm

Training with least squares

Training with least squares (cont.)

@ No training algorithms for multi-layer Percepton
@ Non-convergence for linearly non-separable data

o Weights w are adjusted for misclassified data only
(correctly classified data are not considered at all)

=

o Consider not only mis-classification (on train data), but
also the optimality of decision boundary
o Least squares error training

e Large margin classifiers (e.g. SVM)

@ Squared error function:
1Y 2
Ew)=5>" (w'x,—t,)
n=1

@ Optimisation problem:
min E(w)

@ One way to solve this is to apply gradient descent
(steepest descent):

w — w—nV,Ew)

where 7 : step size (a small positive const.)

Y E(w) — <8E OE )T

owe’ " dwp

0E 01 T 2
ow; 8W,-§nz:; (W Xn — t")
N
=3 (WTx,,ft,,)a—mwa,,

3
)
-

Il
M=

(WTxn - tn) Xni
1

3
Il

@ Trainable in linearly non-separable case

o Not robust (sensitive) against errornous data (outliers) far
away from the boundary

@ More or less a linear discriminant

Inf2b - Learning: Lecture 11 | Single layer Neural Networks (1) 24 Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 25 Inf2b - Learning: Lecture 11 Single layer Neural Networks (1) 26
Appendix — derivatives Derivative rules Vectors of derivatives
Function Derivative
- . . Constant ¢ 0 Consider f(x), where x = (x1,...,xp)"
@ Derivatives of functions of one variable X 1
df . f(x+e€)—f(x P n n-1
— = f'(x) = lim flet 9 =) ower g ™ . . o .
dx =0 € X _?1 Notation: all partial derivatives put in a vector:
13 T
e.g., f(x) =4x3 f'(x) =12x° i VX 2x V. f(x) — of of of
Exponential ex eX «f(x) = Ox1 O’ T " Ox0
. 1
o Partial derivatives of functions of more than one variable Logarithms In(x) N
Sum rule f(x) +&(x) f'(x) +&'(x) Example: f(x) = x$x2
of H f(X—&-e,y)—f(XJ/) / ’ pie: 172
— = lim — 22 77 Product rule f(x)g(x) f'(x)g(x) + f(x)g'(x) 5.9
Ox e—0 € X 1 (%) 3X1 X5
Reciprocal rule il ~70) fo(x) = 03
2 £(x) F(:)8(x)—f(x)g’(x) X%
eg. f(x,y) =y> 5 =2y°x &) GG
Chain rule f(g(x)) f'(g(x))g'(x) Fact: f(x) changes most quickly in direction V,f(x)
z=f(y).y = g(x) E=&2
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Gradient descent (steepest descent)

Linear regression (one variable) least squares line fitting

Linear regression (one variable) (cont)

o First order optimisation algorithm using V. f(x)
@ Optimisation problem: min, f(x)

o Useful when analytic solutions (closed forms) are not
available or difficult to find

@ Algorithm
@ Set an initial value xg and set t =0

Q If ||[Vxf(xt)| ~ 0, then stop. Otherwise, do the
following.

@ xt11=xt —nVxf(x:) forn >0
Q@ t=t+1, and go to step 2.

@ Problem: stops at a local minimum (difficult to find a
global maximum).

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1)

o Training set: D = {(xy, ta)}",

o Linear regression: f, = ax, + b
N

o Objective function: £ =" (t; — (ax; + b))
n=1

@ Optimisation problem: mibn E
a,
o Partial derivatives:
OE N
— =2 t:—
da ‘ (&
N N
X,-2 +2bZX,‘ — 2Zt,-x,-
n=1 n=1

((ti — (axi + b))

(ax; + b)) (—xi)

=2a

==

OF

o5 =2

*11=

N N
= 232x,-+2b Zl 72Zt;
n=1 n=1 n=1

Inf2b - Learning: Lecture 11 Single layer Neural Networks (1)

. OE OE
Letting 9= 0 and i 0
Yaa X TaaX a\ _ [ Toitixi
ZnN:I Xi Zyﬂ 1 b ) ZQI:1 tj
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Linear regression (multiple variables)

Linear regression (multiple variables) (cont)

Summary

Y

@ Training set:
D = {(Xn, ta)}_,, where

T
X, = (1,x1,...,Xp)

@ Linear regression:
t,=wTx,

@ Objective function:
N

@ Optimisation problem:

min E
a,b

Elements of Statistical Learning (2nd Ed.) (© Hastie, Tibshirani & Friedman 2009

N

0 E=>"(t,— wa,,)2

n=1

. - 0E N
o Partial derivatives: B =23 (ta — w T X,)Xni
n=1
@ Vector/matrix representation (nNE) :

. {x” ) (Xl;OA de“ o Pl]
L‘/@J LWO ..... X/.\/(/J [t/\/J

E=(T—-Xw) (T -Xw)
f)—E 2XT(T — XW)
ow

Letting 22 =0 = X"(T - XW)=0

ow
XTXW =XTT

W= (XTX)XTT - analytic solution if the inverse exists

@ Training discriminant functions directly (discriminative
training)

@ Perceptron training algorithm

o Perceptron error correction algorithm
o Least squares error 4 gradient descent algorithm

o Linearly separable vs linearly non-separable

@ Perceptron structures and decision boundaries

See Notes 11 for a Perceptron with multiple output nodes
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Today's Schedule Perceptron (recap)
Inf2b - Learning @ Input-to-output function
Lectures 12,13: Single layer Neural Networks (2,3) ax)=w'x+w = w'x
- T 4 T
@ Perceptron (recap) where w = (wo,w')", x=(1,x")
=1
Hiroshi Shimodaira TR v
(Credit: lain Murray and Steve Renals) © Problems with Perceptron y(x) =g(a(x)) = g(w'x)

) (1, ifa>0,

Centre for Speech Technology Research (CSTR) where g(a) = 0, ifa<oO

School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
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© Extensions of Perceptron

0 Training of a single-layer neural network
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g(a): activation/transfer function

X >x —1
ax)=1-x +x
= wo+wixi+waxp
X wo=1lm=—-1,mwm=1

X
%.
Xo Xy X2 2
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Geometry of Perceptron'’s error correction

Geometry of Perceptron'’s error correction (cont.)

Geometry of Perceptron’s error correction (cont.)

y(xi) = g(w'x)

y(xi) = g(w'x;)

y(xi) = g(w'x;)

wte) o w (- y(x;)) X (0<n<1) wt) W (5 — y(x;)) X (0<n<1) we) o w (- y(x)) ;i (0<n<1)
X, C Xs C A ¢
N X 1 oy 1 1
y(xi) © y(xi) © 0 y(xi) © o W
tmy(x) | g 1 © Gyt g 1 © i) 10 1 : p
X - | X A\Nx
¢ 0|0 -1 (@) . ¢ 0(0 -1 ) ¢ 0|0 -1 o K
101 0 R 101 0 w 101 0 CRx| s w
o 5 x,v o . B o N, K
& W %x;l & A\ |,
X, W X, N X,
o o & A
wTx = ||wl|| x| cos @ @ © o wTx = ||wl|| x| cosd © © o wTx = ||wl|||x]|| cos @ B \O o
CO o O & Co o O < CO o O <& s\\
& & &
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Perceptron structures and decision boundaries Limitations of Perceptron A limitation of Perceptron
o Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)
@ Multi-layer perceptron can form complex decision
boundaries (piecewise-linear), but it is hard to train /%/ N
@ Training does not stop if data are linearly non-separable %o X1 X2
| yomgwT) m = g0 = gD 4w wld)
@ Weights w are adjusted for misclassified data only B Ty Q) o) e
(correctly classified data are not considered at all) 2 =gwy x) = g(wor X +wxp 0 + wy )
y = gw®7z2) = g(wDz + w)z + wlp)

Question: Find the weights for each network
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Single layer Neural Networks (2.3)

Choices of decision boundaries

How can we resolve the problem of training?

How can we resolve the problem of training?(cont)

Single layer Neural Networks (2,3)

Inf2b - Learning: Lectures 12,13

@ Use the least squares error criterion for training
N

E2(W) = Z(YH —ty )2
n=1
@ Replace g() with a differentiable function
What about removing g( ) in the hidden layer?

I(l)'r 7= WI(l)TX

zi=g(w;"'"'x) =

& b
/ - OO
.t

Question: Show networks with linear hidden nodes reduce to

single-layer networks
Inf2b - Learning: Lectures 12,13

L

X2

Single layer Neural Networks (2,3) 1

o Replace g() with a differentiable non-linear function

e.g., Logistic sigmoid function:
1

1
g(a) = 14+e2

2 85 & -

g(a) = 1/ (1+exp(-a)

Mapping: (—o0,4+00) — (0,1)

9 g(a) = g(a) = g(a) (1~ (2))

da
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1+ exp(—a)

Single layer Neural Networks (2,3)




Single Layer Neural Network

Single Layer Neural Network (cont)

Training of single layer neural network

Assume a single-layer neural network with a single output node
with a logistic sigmoid function:

D

y(x) =g( g(ZWiXi>
. =0
8(a) = 1+ exp(—a)
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o Training set : D = {(xy, t1),...,
where t; € {0,1}

@ Error function:

(xn, tw)}

Ew) =33 (=)'
=53 (el -6
35 (s(Swme) -0)

@ Definition of the training problem as an optimisation
problem

min E(w)
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o Optimisation problem: m"in E(w)

@ No analytic solution

e Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton's
method, Conjugate gradient methods

@ Gradient descent
(scalar rep.)

.(new) L E
W e Wi g (w), (n>0)
(vector rep.)
wt™) « w -V, E(w), (n>0)

@ Online/stochastic gradient descent (cf. Batch training)
Update the weights one pattern at a time. (See Note 11)
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Gradient descent

Local minimum problem with the gradient descent

Training of the single-layer neural network

(n>0)

Wi(new)

(n>0)

17}
- W (w),

E

E(w) = %g

0E(w) O0E(w) Dy, 0a,
(9W,' - ayn dan aW:
N
B 0g(an) dap
=L Ot 0
N
=3 (o — tn) &'(an) xai
n=1
N
=" (vn — tn) g(an) (1 — g(an)) X
w; w; n=1
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Another training criterion — cross-entropy error Other activation functions ) Exercise

@ Training problem with the mean squared error (MSE)
criterion with the sigmoid function

1 N
Ewmse(w EZ Yo—ta) s va=ela)
n=1
0 E N
7“55; ST — ta) &' (an) Xni s £'(2) = g(a)(1 - 5(2))

n=1
For such a that g(a) ~ 0 or 1, g'(a) =~ 0.

o Cross-entropy error (NE)

N
w) = 7%;{t,,lny,,+ 1—

It can be shown that:
8EH(W)
0W,' N
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tn) In (17Yr1) }

Single layer Neural Networks (2,3)

gla) = tannia)

e Tanh
e—2a

1—

a) =tanh(a) = —— o8

g(a) @) =17 ‘

o Mapping (=00, +00) — (=1,1) S N
o 0 (zero) centred — faster convergence than S\gmmd

o RelLU (Rectified Linear Unit)
g(a) = max(0, a)

e Several times faster than tanh.
e 'Dying ReLU’ problem — a unit of outputting 0 always
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© Show networks with linear nodes in all hidden layers
reduce to single-layer networks.

@ Prove that the derivative of the logistic sigmoid function
g(a) is given as g'(a) = g(a) (1 — g(a)), and sketch the
graph of it.

@ Explain about the learning rate 7 for the gradient descent
method.

@ Explain the problem with the training of a neural network
with the MSE criterion when the sigmoid function is used
as the activation function.

© (ne) Prove that the partial derivative of the cross-entropy
error is given as
0 Ex(w

OW, NZ
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- tn Xnj -

Single layer Neural Networks (2,3)

21




Summary

@ Limitations of Perceptron
@ Solutions to the problems

@ Neural network with differentiable non-linear functions
(e.g. logistic sigmoid function)

@ Training of the network with the gradient descent
algorithm

o Considered only a single-layer network with a
single-output node

@ A very good reference:
http://neuralnetworksanddeeplearning.com/
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Inf2b - Learning: Lecture 14 Multi-layer neural networks (1)

Today's Schedule

@ Single-layer network with a single output node (recap)
e Single-layer network with multiple output nodes
© Multi-layer neural network

© Activation functions
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Single-layer network with a single output node (recap)

Training of single layer neural network

Training of the single-layer neural network

@ Activation function:

y=2g(a) = g(iw,-x,—)
1

8() = 1+ exp(—a)

o Training set : D = {(x,, t,)}N,
where t, € {0,1}

@ Error function:
N

E(w) =33 (ya— 1)

n=1
o Optimisation problem (training)
min E(w)
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o Optimisation problem: min E(w)
w

o No analytic solution (no closed form)

o Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton's
method, Conjugate gradient methods

o Gradient descent
(scalar rep.)

Wi(new)

— w E(w), (n>0)

K ow;
(vector rep.)

wte)  w— nVwE(w), (n>0)

o Online/stochastic gradient descent (cf. Batch training)
Update the weights one pattern at a time. (See Note 11)
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Ew) =33 (n = )* = 53 (&an) ~ tn)?

D
where y, = g(as), an= Z WiXni s Dw = Xni
i=0 !

D E(w)

OE(w) Dy, Oan

(9W,' - 0yn aanaWi
v 0g(an) 9an
=t =55~ 5

Il
M=

3
)
-

()’n - tn) g/(an) Xni

[
M=

3
1l
-
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Single-layer network with multiple output nodes

Single-layer network with multiple output nodes

The derivatives of the error function (single-layer)

e K output nodes: y1,...,yk.

o For X, = (xn0, - -, Xnp) T,

D
Yok = g(Z Wi Xni) = g(anm)

i=0
D
Ak = > Wii Xni
i=0
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o Training set : D = {(x1,t1),..., (Xn, tn)}
where t, = (tu, ..., ta) and to € {0,1}

@ Error function:

1 N 1 N K
E(w) = EZ llyn —tal* = EZZ (Vo — toic)?
n=1

n=1lk=1

N 1.k
— Z E,, where E,= EZ (Ynk — fnk)2
k=1

n=1

@ Training by the gradient descent:

(n>0)

Wii < Wki*ﬂaw )
ki
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1K s
En = Ez (ynk - tnk)
Yok = &(ank)

D
ank = Zkaan
i=0

aEn _ aEn 8ynk 6ank
owii OYnk Oank OWyi
= (}/nk - tnk)g’(ank)xni
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Multi-layer neural networks

Training of MLP

The derivatives of the error function (two-layers)

Multi-layer perceptron (MLP)

o Hidden-to-output weights:

@ _, 9E

®
j Wy =N
dw,ﬁ-)

J

wg

o Input-to-hidden weights:

Inf2b - Learning: Lecture 14

Multi-layer neural networks (1) 9

1940s Warren McCulloch and Walter Pitts : 'threshold logic’
Donald Hebb : "Hebbian learning’

Frank Rosenblatt : 'Perceptron’

Marvin Minsky and Seymour Papert : limitations of
neural networks

Kunihiro Fukushima: 'Neocognitoron’

1957
1969

1980

1986 D. Rumelhart, G. Hinton, and R. Williams, “Learn-
ing representations by back-propagating errors” (1974,

Paul Werbos)
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k=1
M
Ynk = & ank) ank = Z Wi Znj
b (1)
Znj = h(bnj)x byj = Z Wii " Xni

i=0

aEn _ (9En aynk Oank
ow?  Oymk Jank ow

= (Ynk_tnk)gl(ank) an
OE,  OE, 0z Oby x N

= = 'nk — tn, h bn' ni
BWJ-(I-I) aznj abnj aWj(Il) (Z (y . k) c')z,,j) ( j) %

k=1
- @
= (32 Ome—ta)g (@) w ) () 3
k=1

Inf2b - Learning: Lecture 14 Multi-layer neural networks (1) 11

Error back propagation

Notes on Activation functions

Output of logistic sigmoid activation function

8En _ OEn a_ynk E)ank
ows) Oymk Dank ow)
= (Vnk—tok) &' (ank) znj

8E
5 2 5 2 n
f1k) Znj> ka) 8r3nk

BE,, _ 3E,, 8znj 8b,,j
owiD ~ 0z Dby uf)

K

= (X One—tae'(amw

k=1

K
k=1
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IEJZ)) ' (boy) Xni

= (Z %) WS)) H' (bng) Xni

Multi-layer neural networks (1) 12

Xy X X

@ Interpretation of output values
o Normalisation of the output values

@ Other activation functions
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o Consider a single-layer network with a single output node
logistic sigmoid activation function:

1 D
1+ exp(—a) - g(; w;x;)
— L Xo X Xp
1+exp (— 220 wixi)
o Consider a two class problem, with classes C; and G,.
The posterior probability of C;:
G) P(G
PG PHICI PG
p(x)
1

y=g(a) =

p(x|G) P(G)
p(X\C1) P(C1) + p(X|C2) P(Cz)
1

G P(C)
1+ exp (= In 2oy cy)

- PG P(G)
1+ Saen P
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Approximation of posterior probabilities

Normalisation of output nodes

Some questions on activation functions

Logistic sigmoid function

8@ =T ona) op(=3)

Inf2b - Learning: Lecture 14

p(8)=0.5, B(T)=0.5

Posterior probabilities of two
classes with Gaussian distri-
butions:

Multi-layer neural networks (1) 15

o Outputs with sigmoid activation funtion:

K
S A1
k=1
1 D
vk = glak) = m7 A = ; WkiXi  w

@ Softmax activation function for g():

_ exp(ax)
il exp(ar)

@ Properties of the softmax function

Yk

()0<y<1 (iii) differentiable

K
H =1 v ~ P(C.lx) = p(x|C)P(C)
(i) ;}’k (iv) yi = P(Ci|x) SE Py

Inf2b - Learning: Lecture 14 Multi-layer neural networks (1) 16

@ Is the logistic sigmoid function necessary for single-layer
single-output-node network?
o No, in terms of classification. (we can replace it with

g(a)=a)
o What benefits are there in using the logistic sigmoid
function?

Inf2b - Learning: Lecture 14 Multi-layer neural networks (1) 17




Summary

@ Training of single-layer network

@ Training of multi-layer network with "error back
propagation’

o Activation functions
e Approximation of posterior probabilities
@ Sigmoid function (for single output node)
@ Softmax function (for multiple output nodes)

@ A very good reference:

http://neuralnetworksanddeeplearning.com/
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Today's Schedule

@ Training of neural networks (recap)

© Activation functions

e Experimental comparison of different classifiers
e Overfitting and generalisation

© Deep Neural Networks

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2)

Training of neural networks (recap)

Training of the single-layer neural network (recap)

Multi-layer neural networks (recap)

e Optimisation problem

—

training):

2’:’: (yn - tn)2

N =

min E(w) = min

1Y 1
Ew) =52 (yo—ta) = 53 (s(an) ~ta)?
n=1 n=1

Multi-layer perceptron (MLP)

D
dap
where y, = g(an), an= ;W‘X’”’ ow; Xni @ Hidden-to-output weights:
o No analytic solution (no closed fo oE
nalytic solution (n m) DE(w) _ OE(w) dyy 9, Wi — W) —n—
e Employ an iterative method (requires initial values) Ow; Oyn  0Oan Ow; Iwg
e.g. Gradient descent (steepest descent), Newton's N dg(an) an o Input-to-hidden weights:
method, Conjugate gradient methods = Z (yn —tn) dan Ow; %E ’
n=1 (1) (1)
wil — owy —
o Gradient descent ZN: . s (A 0%_(1_1)
w ) =2 (yn) — tn) &'(an) xni
W,-(ne ) w -3 E(w), (n>0) e o
Wi
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The derivatives of the error function (two-layers) (recap)

Error back propagation (recap)

Some questions on activation functions

1K 2
En = Ez(ynkftnk)

k=1

M
Yk = & ank)7 ank = ZW;EJ?)Z,U‘

=
zoj = h(by), by = iwj(,»l)xni
O0E,  OE, Oyn 8:;
w2 Ok Dank ow?)

= (Yok— tak) &' (ank) Zoj

QE,, OE,, 8Z,U' Obnj K
= = mk—
Owj(,-l) 0zy; Dby 8Wj(,-1) (Z(}’k )

K

= (D m— ta)g (an)w) H(5n) 3

k=1
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0E,, _ aEn 8}/nk aank
aW,SjZ) aynk 8‘:"nk BW,E;)

= (ynk7 tnk) g/(ank) Znj

I .

O0E, _ OE, 0z, Oby;
0%51) 02zpnj Obyj 8Wj(’.1)
K
= (Z(Ynk_tnk)g/(ank)wjg)) ' (bnj) Xni
k=1

K
= (Z‘ﬁ) Wg)) h' (bnj) Xai
k=1
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o |s the logistic sigmoid function necessary for single-layer
single-output-node network?
o No, in terms of classification.
We can replace it with g(a) = a. However, decision
boundaries can be different. (NB: A linear decision
boundary (a = 0.5) is formed in either case.)
o What benefits are there in using the logistic sigmoid
function in the case above?
e The output can be regarded as a posterior probability.
o Compared with a linear output node (g(a) = a), 'logistic
regression’ normally forms a more robust decision
boundary against noise.

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2)




Logistic sigmoid vs a linear output node

Implementations of gradient descent

Experimental comparison

Binary classification problem with the least squares error (LSE):
_ 1
T 1+exp(-a)

£(a) vs gla)=a

(after Fig 4.4b in PRML C. M. Bishop (2006))
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HME

1 IR E
E(W):EZH)‘n—thz =5 Z(Ynk_tnk)z
n=1 1 k=1

n

(Ynk - tnk)z

M=

1
= Z E,, where E,= 3

n=1

x
I

1
@ Batch gradient descent:

Wi — Wi — =
ki ki ]awki
@ Incremental (online) gradient descent:
Update weights for each x,
n
Owyi

Wii < Wi — 1)

@ Stochastic gradient descent: c.f. Batch/Mini-batch training
Update weights for randomly chosen x.

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2) 10

@ Task: spoken vowel classification

o Classifiers:
o Gaussian classifier

o Single layer network (SLN)
o Multi-layer perceptron (MLP)
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Classifying spoken vowels (lecture 09) — Training data

Gaussian for each class

Details of the classifiers

Peterson-Bamey F1-F2 Vowel Training Data
aso0-

3000

2500

2000

F2/Hz

1500~

1000}
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Multi-layer neural networks (2)

Peterson-Barney F1-F2 Vowel Training Data

aso0-

2500

1500}

1000}~

L \
500 00 1000 T200
F1/Hz
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o Gaussian classifier: (2-dimensional) Gaussian for each
class. Training involves estimating mean vector and
covariance matrix for each class, assume equal priors. (50
parameters)

@ Single layer network: 2 inputs, 10 outputs. Iterative
training of weight matrix. (30 parameters)

@ MLP: two inputs, 25 hidden units, 10 outputs. Trained
by gradient descent (backprop). (335 parameters)

@ For SLN and MLP normalise feature vectors to mean=0
and sd=1:

X" — mi
Zni =
Si
m; is sample mean of feature i computed from the
training set, s; is standard deviation.
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Results

Decision Regions: Gaussian classifier

Decision Regions: Single-layer perceptron

86.5% correct
85.5% correct
86.5% correct

Gaussian classifier:
Single layer network:
MLP:

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2)

y F1-F2 Gaussian Decision Regions

4

500
F1/Hz
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PetersonBarney F1F2 SLN Decision Regions

3000

2500 -

2000 -

1000 -

0 L L L L L L L ,
100 200 300 400 500 600 700 800 900
FiHz
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Decision Regions: Multi-layer perceptron

Problems with multi-layer neural networks

Overfitting and generalisation

Peterson Barney F1F2 MLP Decision Regions

3000

2500

2000

1500

F2/Hz

1000

500

0 L L L L L L L ,
100 200 300 400 500 600 700 800 900
F1/Hz
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o Still difficult to train
o Computationally very expensive (e.g. weeks of training)
o Slow convergence ('vanishing gradients’)
o Difficult to find the optimal network topology

@ Poor generalisation (under some conditions)
e Very good performance on the training set
o Poor performance on the test set

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2)

Example of curve fitting by a polynomial function:

M
y(X7W):W0+W1X+W2X2+...+WMXM:ZWka
k=0

(after Fig 1.4 in PRML C. M. Bishop (2006))

o cf. memorising the training data

Inf2b - Learning: Lecture 15 Multi-layer neural networks (2) 20

Generalisation in neural networks

Overtraining in neural networks (f)

Early stopping ()

o How many hidden units (or, how many weights) do we need?
@ Optimising training set performance does not necessarily
optimise test set performance
o Network too “flexible”: Too many weights compared with the
number of training examples
o Network not flexible enough: Not enough weights (hidden
units) to represent the desired mapping
o Generalisation Error: The predicted error on unseen data.
How can the generalisation error be estimated?
e Training error?
1 X )
Etrain = E Z Z(}’k - tk)
trainingset k=1
o Cross-validation error? K

> > k- w)?

validationset k=1

Exval = 5

o Overtraining (overfitting) corresponds to a network
function too closely fit to the training set (too much
flexibility)

@ Undertraining corresponds to a network function not well
fit to the training set (too little flexibility)

@ Solutions

e If possible increasing both network complexity in line
with the training set size

e Use prior information to constrain the network function
Control the flexibility: Structural Stabilisation

o Control the effective flexibility: early stopping and
regularisation

@ Use validation set to decide when to stop training

@ Training-set error monotonically decreases as training
progresses

@ Validation-set error will reach a minimum then start to
increase

o “Effective Flexibility” increases as training progresses

o Network has an increasing number of “effective degrees of
freedom” as training progresses

@ Network weights become more tuned to training data

o Very effective — used in many practical applications such
as speech recognition and optical character recognition
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Early stopping Regularisation — Penalising complexity () Ability of neural networks (f)
£ @ Universal approximation thorem

o ) e “Univariate function and a set of affine functionals can

@ Original error function uniformly approximate any continuous function of n real
1 2 variables with support in the unit hypercube; only mild
E(w) = EZIHy" = tl| conditions are imposed on the univariate function. *
- (G. Cybenko (1989)
validation @ Regularised error function —

Training
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= 1& 2 B 2
Ew) = 5 llyn—tall* + 53 /1w
n=1 ¢
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A single-output node nerural network with a single
hidden layer with a finite neurons can approximate
continuous functions.

o K. Hornik (1990) doi:10.1016,/0893-6080(91)90009-T
o N. Guliyev, V. Ismailov (2018) 10.31219/osf.io/xgnw8
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Problems with multi-layer neural networks

Breakthrough ()

Breakthrough ()

1957  Frank Rosenblatt : 'Perceptron’
1986  D. Rumelhart, G. Hinton, and R. Williams: 'Backpropagation’

2006 G. Hinton etal (U. Toronto)

Speaker-independent phonetic recognition on TIMIT

I X I I I
o Still difficult to train “Reducing the dimensionality of data with neural networks”, Science. 30
o Computationally very expensive (e.g. weeks of training) 2009  J. Schmidhuber (Swiss Al Lab IDSIA) X281 X *
o Slow convergence ('vanishing gradients’) Winner at ICDAR2009 handwriting recognition competition ; % X i
ifi i i 2011- from U.Toronto, Microsoft, IBM, Googl w26 - K7
o Difficult to find the optimal network topology many papers tfrom U. loronto, IVlicrosoft, , Google, ... [ ¥
@ What's the ideas? §24 L ¥ X
@ Poor generalisation (under some conditions) o Pretraining o X
o Very good performance on the training set o A single layer of feature detectors — Stack it to form 822 - )K;‘g
several hidden layers <
e Poor performance on the test set o ¥ X
e Fine-tuning, dropout 20 - X
o GPU 18 | | | |
e Convolutional network (CNN), Long short-term memory 1990 1995 2000 2005 2010 2015
(LSTM) Year
o Rectified linear unit (ReLU)
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Summary

Error back propagation training

Logistic sigmoid vs linear node

Overfitting vs generalisation

[

[

@ Decision boundaries

°

o (Feed-forward network vs RNN)

@ A very good reference:
http://neuralnetworksanddeeplearning.com/
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Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://wuw.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
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Today's Schedule

@ Topic revision
© Maths formulae to remember
© Methods/derivations to understand

@ Exam technique
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Topics dealt within the course

Maths formulae to remember

Maths formulae to remember (cont)

@ Distance and similarity measures (Pearson correlation coef.)
o Clustering (K-means clustering)
@ Dimensionality reduction (covariance matrix, PCA)
o Classification
o K-NN classification
o Naive Bayes
o Gaussian classifiers (MLE, discriminant functions)
@ Neural networks (Perceptron error correction algorithm, sum-of-squares
error cost function, gradient descent, EBP)
Statistical pattern recognition theories

@ Euclidean distance:

S - )2

i=1

n(x.y) =Ilx -yl =

. a1 S
cf. sim(x,y) = TGy 35 2 similarity measure

@ Pearson correlation coefficient:

plx.y) = ﬁﬁ%u

o Bayes decision rule (cf. MAP decision rule)
k* = arg max P(Ck|x) = arg max P(x|C)P(Cx)

@ Naive Bayes for document classification
(vocabulary: V = {w; wy }. test document: D = (o1, o))

o Likelihood by Bernoulli document model

° ay 4
o Bayes theorem, and Bayes decision rule B Th P(b|Ck) = H [beP(we | Cie) + (1= be)(1—P(we | Ci))]
o Probability distributions and parameter estimation @ Dayes | heorem =1
e Bernoulli distribution / Multinomial distribution e Likelihood by Multinomial document model
o Gaussian distribution P(Y‘X) — w i L
° Disc_ri_minant func_tions ) - o P(X) p(x|Ck) o< HP(Wt\Ck)X' = HP(OI|CI<)
o Decision boundaries/regions (minimum error rate classification) P(Celx) = p(x|C)P(Ce) p(x]C)P(Ck) P paie}
o Evaluation measures and methods KIX) = p(x) - ZK p(x|C)P(Ce)
@ Optimisation problems k=1
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Maths formulae to remember (cont.)

Maths formulae to remember (cont)

Methods/derivations to understand (non exhaustive)

o Univariate Gaussian pdf:

p(x|p, %) = N(x; 1, 0%) = \/2;7 exp (7()(2;211)2)

o Multivariate Gaussian pdf:
_ 1 1 Ty—1
P11, 2) = (5 o0 (50— 10T E - )

Parameter estimation from samples:

N R N
M= N-1 Z(xn*ﬁ)(xnfﬁ')T

n=1 n=1
NB: N in case of MLE

@ Correlation coefficient:

o(xi %) = pj = -, T =(oy)
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@ Logistic sigmoid function:
-~ 1
~ 1+exp(-a)

g'(a) = g(a)(1-g(a))

y=2g(a)

@ Softmax activation function (for multiple output nodes):
_ expla)
iy exp(ar)

@ and basic maths rules (e.g. differentiation)

Yk
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o Clustering and classification
@ Discriminant functions of Gaussian Bayes classifiers
@ Learning as an optimisation problem

e Maximum likelihood estimation

o Gradient descent and back propagation algorithm (neural
networks) for minimising the sum-of-squares error

NB: Learning is a difficult problem by nature —
generalisation from a limited amount of training samples.
— need to assume some structures (constraints):
o Probability distributions
o Naive Bayes
o Diagonal covariance matrix rather than a full covariance
for each class, shared covariance matrix among classes,
regularisation.
o Dimensionality reduction and feature selection (NE)
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Machine learning as optimisation problems

Exam revision

Exam revision (cont.)

@ Euclidean-distance based classification
k* = arg min||x — r||
k

@ K-means clustering
K N
f 2
min E g Zien || X0 — M|
{zdig 03

@ Dimensionality reduction to 2D with PCA
max Var (y) + Var (z)
uv

subject to [lul|=1,|lv[[=1,uLv

@ Bayes decision rule
k* =arg max P(Cy|x) = arg max P(x|Ck)P(Ck)

@ Maximum likelihood parameter estimation
max L(p, £|D)
s>

@ Least squares error training of neural networks

1 N
i3 l3n = ol
=
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Look at lecture notes, slides, tutorials, coursework, and past
papers.

Early exam papers: many (useful) multiple choice Qs
@ No longer the exam format
@ Syllabus has changed slightly
Recent exam papers since 2008/09
@ Answer two questions from section A (ADS) and two
questions from section B (Learning).
@ Closed-book exam.
@ Calculators may be used (approved ones only).
@ Solutions are available only for 2008,/09, 2009/10,
2013/14 (no plans of releasing those of missing years)
@ NB: errors in some solutions, e.g. 5 (c) of 2008/09: square
root is not taken in computing standard deviations.
Well prepared for the exam of 120 minutes
60 minutes/section, 30 minutes/question
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Don't overfit!
Anything that appears in the notes, slides, tutorial sheets, or
coursework is examinable, unless marked non-examinable,
extra topics, or (1)

Don't trust unofficial solutions

Inf2b Revision Meeting
e Date: TBC (in late April)
@ Send me questions/requests that you want me to
discuss at the meeting.
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Time in the exam

@ Half an hour per question (minus time to pick questions)
@ Don't panic!

@ Go for easy marks first

@ Don't spend a long time on any small part

@ Don't scrawl - you might lose marks if the marker cannot
read /understand

@ Know the standard stuff:
there's not time to work everything out from scratch

Calculators may be used in the examination: The School of Informatics does not
provide calculators for use in exams. If the use of a calculator is permitted in an
exam, it's your responsibility to bring an approved calculator to the exam.

Inf2b - Learning: Lecture 16 | Review

End-of-course feedback:

Thanks!
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