Inf2b - Learning

Lecture 16: Review

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
Today’s Schedule

1. Topic revision
2. Maths formulae to remember
3. Methods/derivations to understand
4. Exam technique
Topics dealt within the course

- Distance and similarity measures (Pearson correlation coef.)
- Clustering (K-means clustering)
- Dimensionality reduction (covariance matrix, PCA)
- Classification
 - K-NN classification
 - Naive Bayes
 - Gaussian classifiers (MLE, discriminant functions)
 - Neural networks (Perceptron error correction algorithm, sum-of-squares error cost function, gradient descent, EBP)
- Statistical pattern recognition theories
 - Bayes theorem, and Bayes decision rule
 - Probability distributions and parameter estimation
 - Bernoulli distribution / Multinomial distribution
 - Gaussian distribution
 - Discriminant functions
 - Decision boundaries/regions (minimum error rate classification)
 - Evaluation measures and methods
- Optimisation problems
Maths formulae to remember

- **Euclidean distance:**
 \[r_2(x, y) = \| x - y \| = \sqrt{\sum_{i=1}^{D} (x_i - y_i)^2} \]

 cf. \(\text{sim}(x, y) = \frac{1}{1 + r_2(x, y)} \) as a similarity measure

- **Pearson correlation coefficient:**
 \[\rho(x, y) = \frac{1}{N-1} \sum_{n=1}^{N} \frac{(x_n - \mu_x)}{\sigma_x} \frac{(y_n - \mu_y)}{\sigma_y} \]

- **Bayes Theorem**
 \[
 P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \\
 P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)} = \frac{p(x|C_k)P(C_k)}{\sum_{k=1}^{K} p(x|C_k)P(C_k)}
 \]
Maths formulae to remember \textit{(cont.)}

- Bayes decision rule (cf. MAP decision rule)
 \[k^* = \arg \max_k P(C_k \mid x) = \arg \max_k P(x \mid C_k) P(C_k) \]

- Naive Bayes for document classification
 \begin{itemize}
 \item Likelihood by Bernoulli document model
 \[P(b \mid C_k) = \prod_{t=1}^{\left| V \right|} \left[b_t P(w_t \mid C_k) + (1 - b_t)(1 - P(w_t \mid C_k)) \right] \]
 \item Likelihood by Multinomial document model
 \[p(x \mid C_k) \propto \prod_{t=1}^{\left| V \right|} P(w_t \mid C_k)^{x_t} = \prod_{i=1}^{L} P(o_i \mid C_k) \]
 \end{itemize}
Maths formulae to remember (cont.)

- **Univariate Gaussian pdf:**

 \[p(x | \mu, \sigma^2) = N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) \]

- **Multivariate Gaussian pdf:**

 \[p(x | \mu, \Sigma) = \frac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right) \]

 Parameter estimation from samples:

 \[\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n, \quad \hat{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})(x_n - \hat{\mu})^T \]

 NB: \(N \) in case of MLE

- **Correlation coefficient:**

 \[\rho(x_i, x_j) = \rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}\sigma_{jj}}} \]

 \[\Sigma = (\sigma_{ij}) \]
Logistic sigmoid function:

\[y = g(a) = \frac{1}{1 + \exp(-a)} \]

\[g'(a) = g(a)(1-g(a)) \]

Softmax activation function (for multiple output nodes):

\[y_k = \frac{\exp(a_k)}{\sum_{\ell=1}^{K} \exp(a_\ell)} \]

and basic maths rules (e.g. differentiation)
Methods/derivations to understand (non exhaustive)

- Clustering and classification
- Discriminant functions of Gaussian Bayes classifiers
- Learning as an optimisation problem
 - Maximum likelihood estimation
 - Gradient descent and back propagation algorithm (neural networks) for minimising the sum-of-squares error

NB: Learning is a difficult problem by nature — generalisation from a limited amount of training samples. → need to assume some structures (constraints):
 - Probability distributions
 - Naive Bayes
 - Diagonal covariance matrix rather than a full covariance for each class, shared covariance matrix among classes, regularisation.
 - Dimensionality reduction and feature selection (NE)
Machine learning as optimisation problems

- Euclidean-distance based classification
 \[k^* = \arg \min_k \| \mathbf{x} - \mathbf{r}_k \| \]

- K-means clustering
 \[\min \sum_k \sum_n z_{kn} \| \mathbf{x}_n - \mathbf{m}_k \|^2 \]

- Dimensionality reduction to 2D with PCA
 \[\max_{\mathbf{u}, \mathbf{v}} \text{Var}(\mathbf{y}) + \text{Var}(\mathbf{z}) \]
 \[\text{subject to } \| \mathbf{u} \| = 1, \| \mathbf{v} \| = 1, \mathbf{u} \perp \mathbf{v} \]

- Bayes decision rule
 \[k^* = \arg \max_k P(C_k | \mathbf{x}) = \arg \max_k P(\mathbf{x} | C_k) P(C_k) \]

- Maximum likelihood parameter estimation
 \[\max_{\mu, \Sigma} L(\mu, \Sigma | \mathcal{D}) \]

- Least squares error training of neural networks
 \[\min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \| \mathbf{y}_n - \mathbf{t}_n \|^2 \]
Exam revision

Look at lecture notes, slides, tutorials, coursework, and past papers.

Early exam papers: many (useful) multiple choice Qs
- No longer the exam format
- Syllabus has changed slightly

Recent exam papers since 2008/09
- Answer two questions from section A (ADS) and two questions from section B (Learning).
- Closed-book exam.
- Calculators may be used (approved ones only).
- Solutions are available only for 2008/09, 2009/10, 2013/14 (no plans of releasing those of missing years)
- NB: errors in some solutions, e.g. 5 (c) of 2008/09: square root is not taken in computing standard deviations.

Well prepared for the exam of 120 minutes
- 60 minutes/section, 30 minutes/question
Don’t overfit!

Anything that appears in the notes, slides, tutorial sheets, or coursework is examinable, unless marked non-examinable, extra topics, or (†)

Don’t trust unofficial solutions

Inf2b Revision Meeting

- Date: TBC (in late April)
- Send me questions/requests that you want me to discuss at the meeting.
Time in the exam

- Half an hour per question (minus time to pick questions)
- Don’t panic!
- Go for easy marks first
- Don’t spend a long time on any small part
- Don’t scrawl - you might lose marks if the marker cannot read/understand
- Know the standard stuff: there’s not time to work everything out from scratch

Calculators may be used in the examination: The School of Informatics does not provide calculators for use in exams. If the use of a calculator is permitted in an exam, it’s your responsibility to bring an approved calculator to the exam.
End-of-course feedback:

Thanks!