Today’s Schedule

- Single-layer network with a single output node (recap)
- Single-layer network with multiple output nodes
- Multi-layer neural network

Single-layer network with a single output node (recap)

- Activation function:
 \[y = g(a) = g\left(\sum_{i=0}^{d} w_{i} x_{i}\right) \]
 \[g(a) = \frac{1}{1 + \exp(-a)} \]

- Training set: \(D = \{(x_{n}, t_{n})\}_{n=1}^{N} \)
 where \(t_{n} \in \{0, 1\} \)

- Error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y_{n} - t_{n})^{2} \]

- Optimisation problem (training):
 \[\min_{w} E(w) \]

Training of single layer neural network

- Optimisation problem: \(\min E(w) \)
- No analytic solution (no closed form)
- Employ an iterative method (requires initial values)
 e.g. Gradient descent (steepest descent), Newton’s method, Conjugate gradient methods

- Gradient descent (scalar rep.)
 \[w_{i}^{(\text{new})} \leftarrow w_{i} - \eta \frac{\partial E(w)}{\partial w_{i}}, \quad \eta > 0 \]

- Gradient descent (vector rep.)
 \[w^{(\text{new})} \leftarrow w - \eta \nabla_{w} E(w), \quad \eta > 0 \]

The derivatives of the error function (single-layer)

- Error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y_{n} - t_{n})^{2} \]
 where \(a_{n} = \sum_{i=0}^{d} w_{i} x_{i} \)
 \[\frac{\partial E(w)}{\partial w_{i}} = \frac{\partial E(w)}{\partial a_{n}} \frac{\partial a_{n}}{\partial w_{i}} = \frac{1}{2} \sum_{n=1}^{N} (y_{n} - t_{n}) \frac{\partial g(a_{n})}{\partial a_{n}} \]

- Error function:
 \[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y_{n} - t_{n})^{2} \]
 \[\frac{\partial E(w)}{\partial w_{i}} = \frac{\partial E(w)}{\partial a_{n}} \frac{\partial a_{n}}{\partial w_{i}} = \frac{1}{2} \sum_{n=1}^{N} (y_{n} - t_{n}) g'(a_{n}) x_{i} \]

Multi-layer neural networks

- Multi-layer perceptron (MLP)
 \[w_{ij}^{(2)} \leftarrow w_{ij}^{(2)} - \eta \frac{\partial E(w)}{\partial w_{ij}^{(2)}} \]

- Input-to-hidden weights:
 \[w_{ij}^{(1)} \leftarrow w_{ij}^{(1)} - \eta \frac{\partial E(w)}{\partial w_{ij}^{(1)}} \]
Training of MLP

1940s Warren McCulloch and Walter Pitts: 'threshold logic'
Donald Hebb: 'Hebbian learning'
1957 Frank Rosenblatt: 'Perceptron'
1969 Marvin Minsky and Seymour Papert: limitations of neural networks
1980 Kunihiro Fukushima: 'Neocognitron'

Notes on Activation functions
- Interpretation of output values
- Normalisation of the output values
- Other activation functions

Output of logistic sigmoid activation function
- Consider a single-layer network with a single output node logistic sigmoid activation function:
 \[y = g(a) = \frac{1}{1 + \exp(-a)} = g \left(\sum_{j=1}^{d} w_{j} x_{j} \right) \]
- Consider a two class problem, with classes \(c_1 \) and \(c_2 \). The posterior probability of \(c_1 \):
 \[P(c_1|x) = \frac{p(x|c_1) P(c_1)}{p(x)} = \frac{p(x|c_1) P(c_1)}{p(x|c_1) P(c_1) + p(x|c_2) P(c_2)} = \frac{1}{1 + \exp(-\ln \frac{p(x|c_1) P(c_1)}{p(x|c_2) P(c_2)})} \]

Normalisation of output nodes
- Original outputs:
 \[y_k = g(a_k), a_k = \sum_{i=0}^{d} w_{ki} x_i \]
- Softmax activation function for \(g() \):
 \[y_k = \frac{\exp(a_k)}{\sum_{i=1}^{K} \exp(a_i)} \]
- Properties of the softmax
 (i) \(0 \leq y_k \leq 1 \)
 (ii) \(\sum_{k=1}^{K} y_k = 1 \)
 (iii) \(y_k \approx P(c_k|x) = \frac{p(x|c_k) P(c_k)}{\sum_{k=1}^{K} p(x|c_k) P(c_k)} \)

Some questions on activation functions
- Is the logistic sigmoid function necessary for single-layer single-output-node network?
 - No, in terms of classification. (we can replace it with \(g(a) = a \))
 - What benefits are there in using the logistic sigmoid function?

Online gradient descent
- \[E(w) = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 = \frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]
- Batch gradient descent:
 \[w_{ki} \leftarrow w_{ki} - \frac{\partial E}{\partial w_{ki}} \]
- Incremental (online) gradient descent:
 Update weights for each \(x_n \)
 \[w_{ki} \leftarrow w_{ki} - \frac{\partial E}{\partial w_{ki}} \]
- Stochastic gradient descent:
 Update weights for randomly chosen \(x \).
<table>
<thead>
<tr>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Training of single-layer network</td>
</tr>
<tr>
<td>- Training of multi-layer network with 'error back propagation'</td>
</tr>
<tr>
<td>- Activation functions (e.g. softmax)</td>
</tr>
</tbody>
</table>