Inf2b Learning and Data

Lecture 13: Multi-layer neural networks (1)

Hiroshi Shimodaira

(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2017/infr08009learning

Office hours: Wednesdays at 14:00-15:00 in IF-3.04 → 2.46

Jan-Mar 2017
Today’s Schedule

1. Single-layer network with a single output node (recap)

2. Single-layer network with multiple output nodes

3. Multi-layer neural network

4. Activation functions
Single-layer network with a single output node (recap)

- Activation function:

\[y = g(a) = g\left(\sum_{i=0}^{D} w_i x_i\right) \]

\[g(a) = \frac{1}{1 + \exp(-a)} \]

- Training set: \(\mathcal{D} = \{(x_n, t_n)\}_{n=1}^{N} \)

where \(t_n \in \{0, 1\} \)

- Error function:

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2 \]

- Optimisation problem (training)

\[\min_w E(w) \]
Training of single layer neural network

- Optimisation problem: \(\min_w E(w) \)
- No analytic solution (no closed form)
- Employ an iterative method (requires initial values)
 e.g. Gradient descent (steepest descent), Newton’s method, Conjugate gradient methods
- Gradient descent
 (scalar rep.)
 \[w_i^{(\text{new})} \leftarrow w_i - \eta \frac{\partial}{\partial w_i} E(w), \quad (\eta > 0) \]
 (vector rep.)
 \[\mathbf{w}^{(\text{new})} \leftarrow \mathbf{w} - \eta \nabla \mathbf{w} E(\mathbf{w}), \quad (\eta > 0) \]
- Online/stochastic gradient descent (cf. Batch training)
 Update the weights one pattern at a time. (See Note 11)
Training of the single-layer neural network

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y_n - t_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (g(a_n) - t_n)^2 \]

where \(y_n = g(a_n) \), \(a_n = \sum_{i=0}^{D} w_i x_{ni} \), \(\frac{\partial a_n}{\partial w_i} = x_{ni} \)

\[\frac{\partial E(w)}{\partial w_i} = \frac{\partial E(w)}{\partial y_n} \frac{\partial y_n}{\partial a_n} \frac{\partial a_n}{\partial w_i} \]

\[= \sum_{n=1}^{N} (y_n - t_n) \frac{\partial g(a_n)}{\partial a_n} \frac{\partial a_n}{\partial w_i} \]

\[= \sum_{n=1}^{N} (y_n - t_n) g'(a_n) x_{ni} \]
Single-layer network with multiple output nodes

- K output nodes: y_1, \ldots, y_K.
- For $\mathbf{x}_n = (x_{n0}, \ldots, x_{nD})^T$,

$$y_{nk} = g \left(\sum_{i=0}^{D} w_{ki} x_{ni} \right) = g(a_{nk})$$

$$a_{nk} = \sum_{i=0}^{D} w_{ki} x_{ni}$$
Single-layer network with multiple output nodes

- Training set: \(\mathcal{D} = \{ (\mathbf{x}_1, \mathbf{t}_1), \ldots, (\mathbf{x}_N, \mathbf{t}_N) \} \)
 - where \(\mathbf{t}_n = (t_{n1}, \ldots, t_{nK}) \) and \(t_{nk} \in \{0, 1\} \)

- Error function:
 \[
 E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \| \mathbf{y}_n - \mathbf{t}_n \|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]
 \[
 = \sum_{n=1}^{N} E_n, \quad \text{where} \quad E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]

- Training by the gradient descent:
 \[
 w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}}, \quad (\eta > 0) \]
The derivatives of the error function (single-layer)

\[E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]

\[y_{nk} = g(a_{nk}) \]

\[a_{nk} = \sum_{i=0}^{d} w_{ki} x_{ni} \]

\[\frac{\partial E_n}{\partial w_{ki}} = \frac{\partial E_n}{\partial y_{nk}} \frac{\partial y_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{ki}} = (y_{nk} - t_{nk}) g'(a_{nk}) x_{ni} \]
Multi-layer neural networks

Multi-layer perceptron (MLP)

- **Hidden-to-output weights:**
 \[
 w_{kj}^{(2)} \leftarrow w_{kj}^{(2)} - \eta \frac{\partial E}{\partial w_{kj}^{(2)}}
 \]

- **Input-to-hidden weights:**
 \[
 w_{ji}^{(1)} \leftarrow w_{ji}^{(1)} - \eta \frac{\partial E}{\partial w_{ji}^{(1)}}
 \]
Training of MLP

1940s Warren McCulloch and Walter Pitts: 'threshold logic'
 Donald Hebb: 'Hebbian learning'
1957 Frank Rosenblatt: 'Perceptron'
1969 Marvin Minsky and Seymour Papert: limitations of neural networks
1980 Kunihiro Fukushima: 'Neocognitoron'
The derivatives of the error function (two-layers)

\[E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]

\[y_{nk} = g(a_{nk}), \quad a_{nk} = \sum_{j=1}^{M} w_{kj}^{(2)} z_{nj} \]

\[z_{nj} = h(b_{nj}), \quad b_{nj} = \sum_{i=0}^{D} w_{ji}^{(1)} x_{ni} \]

\[\frac{\partial E_n}{\partial w_{kj}^{(2)}} = \frac{\partial E_n}{\partial y_{nk}} \frac{\partial y_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{kj}^{(2)}} = (y_{nk} - t_{nk}) g'(a_{nk}) z_{nj} \]

\[\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \frac{\partial E_n}{\partial z_{nj}} \frac{\partial z_{nj}}{\partial b_{nj}} \frac{\partial b_{nj}}{\partial w_{ji}^{(1)}} = \left(\sum_{k=1}^{K} (y_{nk} - t_{nk}) \frac{\partial y_{nk}}{\partial z_{nj}} \right) h'(b_{nj}) x_{ni} \]

\[= \left(\sum_{k=1}^{K} (y_{nk} - t_{nk}) g'(a_{nk}) w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni} \]
Error back propagation

$$\frac{\partial E_n}{\partial w_{kj}^{(2)}} = \frac{\partial E_n}{\partial y_{nk}} \frac{\partial y_{nk}}{\partial a_{nk}} \frac{\partial a_{nk}}{\partial w_{kj}^{(2)}}$$

$$= (y_{nk} - t_{nk}) g'(a_{nk}) z_{nj}$$

$$= \delta_{nk}^{(2)} z_{nj}, \quad \delta_{nk}^{(2)} = \frac{\partial E_n}{\partial a_{nk}}$$

$$\frac{\partial E_n}{\partial w_{ji}^{(1)}} = \frac{\partial E_n}{\partial z_{nj}} \frac{\partial z_{nj}}{\partial b_{nj}} \frac{\partial b_{nj}}{\partial w_{ji}^{(1)}}$$

$$= \left(\sum_{k=1}^{K} (y_{nk} - t_{nk}) g'(a_{nk}) w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni}$$

$$= \left(\sum_{k=1}^{K} \delta_{nk}^{(2)} w_{kj}^{(2)} \right) h'(b_{nj}) x_{ni}$$
Notes on Activation functions

- Interpretation of output values
- Normalisation of the output values
- Other activation functions
Consider a single-layer network with a single output node logistic sigmoid activation function:

\[y = g(a) = \frac{1}{1 + \exp(-a)} = g\left(\sum_{i=0}^{D} w_i x_i\right) \]

\[= \frac{1}{1 + \exp\left(-\sum_{i=0}^{D} w_i x_i\right)} \]

Consider a two class problem, with classes \(C_1 \) and \(C_2 \). The posterior probability of \(C_1 \):

\[P(C_1|x) = \frac{p(x|C_1) P(C_1)}{p(x)} = \frac{1}{1 + \exp\left(-\ln \frac{p(x|C_1) P(C_1)}{p(x|C_2) P(C_2)}\right)} \]
Approximation of posterior probabilities

Logistic sigmoid function

\[g(a) = \frac{1}{1 + \exp(-a)} \]

Posterior probabilities of two classes with Gaussian distributions:
Normalisation of output nodes

- Outputs with sigmoid activation function:
 \[\sum_{k=1}^{K} y_k \neq 1 \]
 \[y_k = g(a_k) = \frac{1}{1 + \exp(-a_k)}, \quad a_k = \sum_{i=0}^{D} w_{ki} x_i \]

- Softmax activation function for \(g() \):
 \[y_k = \frac{\exp(a_k)}{\sum_{\ell=1}^{K} \exp(a_{\ell})} \]

- Properties of the softmax function

 (i) \(0 \leq y_k \leq 1 \)

 (ii) \(\sum_{k=1}^{K} y_k = 1 \)

 (iii) differentiable

 (iv) \(y_k \approx P(C_k|x) = \frac{p(x|C_k)P(C_k)}{\sum_{\ell=1}^{K} p(x|C_\ell)P(C_\ell)} \)
Some questions on activation functions

- Is the logistic sigmoid function necessary for single-layer single-output-node network?
 - No, in terms of classification. (we can replace it with \(g(a) = a \))

- What benefits are there in using the logistic sigmoid function?
Online gradient descent

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} \|y_n - t_n\|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2 \]

= \sum_{n=1}^{N} E_n, \quad \text{where} \quad E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - t_{nk})^2

- **Batch gradient descent:**
 \[w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}} \]

- **Incremental (online) gradient descent:**
 Update weights for each \(x_n \)
 \[w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E_n}{\partial w_{ki}} \]

- **Stochastic gradient descent:** *c.f. Batch/Mini-batch training*
 Update weights for randomly chosen \(x \).
Summary

- Training of single-layer network
- Training of multi-layer network with 'error back propagation'
- Activation functions
 - Approximation of posterior probabilities
 - Sigmoid function (for single output node)
 - Softmax function (for multiple output nodes)
- A very good reference:
 http://neuralnetworksanddeeplearning.com/