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Today’s Schedule

1 Perceptron (recap)

2 Problems with Perceptron

3 Extensions of Perceptron

4 Training of a single-layer neural network
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Perceptron (recap)

Input-to-output function

a(ẋ) = wTx + w0 = ẇT ẋ

where ẇ = (w0,wT )T , ẋ = (1, xT )T

x0 = 1

y(ẋ) = g( a(ẋ) ) = g( ẇT ẋ )

where g(a) =

{
1, if a ≥ 0,
0, if a < 0

g(a): activation/transfer function
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a(x) = 1− x1 + x2
= w0+w1x1+w2x2

w0 =1,w1 =−1,w2 =1
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Geometry of Perceptron’s error correction

y(xi) = g(wTxi)

w (new) ← w + η (ti − y(xi)) xi (0 < η < 1)
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Geometry of Perceptron’s error correction (cont.)

y(xi) = g(wTxi)

w (new) ← w + η (ti − y(xi)) xi (0 < η < 1)
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Geometry of Perceptron’s error correction (cont.)

y(xi) = g(wTxi)

w (new) ← w + η (ti − y(xi)) xi (0 < η < 1)
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Perceptron structures and decision boundaries
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Question: Find the weights for each network
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Limitations of Perceptron

Single-layer perceptron is just a linear classifier
(Marvin Minsky and Seymour Papert, 1969)

Multi-layer perceptron can form complex decision
boundaries (piecewise-linear), but it is hard to train

Training does not stop if data are linearly non-separable

Weights w are adjusted for misclassified data only
(correctly classified data are not considered at all)
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A limitation of Perceptron
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Choices of decision boundaries

(a) (b) (c)
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How can we resolve the problem of training?

Use the least squares error criterion for training

E2(w) =
N∑

n=1

( yn − tn )2

Replace g( ) with a differentiable function

What about removing g( ) in the hidden layer?

zi = g(w(1)
i

Tx) ⇒ zi = w(1)
i

Tx
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Question: Show networks with linear hidden nodes reduce to

single-layer networks
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How can we resolve the problem of training?(cont.)

Replace g( ) with a differentiable non-linear function

e.g., Logistic sigmoid function:

g(a) =
1

1 + e−a
=

1

1 + exp(−a)
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Mapping: (−∞,+∞) → (0, 1)

d

da
g(a) = g ′(a) = g(a) (1− g(a))
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Single Layer Neural Network

Assume a single-layer neural network with a single output node
with a logistic sigmoid function:

y(x) = g( wTx ) = g

(
D∑
i=0

wixi

)
g(a) =

1

1 + exp(−a)
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Single Layer Neural Network (cont.)

Training set : D = {(x1, t1), . . . , (xN , tN)}
where ti ∈ {0, 1}

Error function:

E (w) =
1

2

N∑
n=1

( yn − tn )2

=
1

2

N∑
n=1

(
g(wTxn)− tn

)2
=

1

2

N∑
n=1

(
g

(
D∑
i=0

wixni

)
− tn

)2

Definition of the training problem as an optimisation
problem

min
w

E (w)
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Training of single layer neural network

Optimisation problem: min
w

E (w)

No analytic solution

Employ an iterative method (requires initial values)
e.g. Gradient descent (steepest descent), Newton’s
method, Conjugate gradient methods

Gradient descent

(scalar rep.)

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

(vector rep.)
w (new) ← w − η∇wE (w), (η > 0)

Online/stochastic gradient descent (cf. Batch training)

Update the weights one pattern at a time. (See Note 11)

Inf2b - Learning: Lectures 12,13 Single layer Neural Networks (2,3) 15



Gradient descent

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

i

E

w
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Local minimum problem with the gradient descent

w
(new)
i ← wi − η

∂

∂wi
E (w), (η > 0)

iw

E
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Training of the single-layer neural network

E (w) =
1

2

N∑
n=1

( yn − tn )2 =
1

2

N∑
n=1

(
g

(
D∑
i=0

wixni

)
− tn

)2

where yn = g(an), an =
D∑
i=0

wixni ,
∂ an
∂ wi

= xni

∂ E (w)

∂ wi
=
∂ E (w)

∂ yn

∂ yn
∂ an

∂ an
∂ wi

=
N∑

n=1

(yn − tn)
∂ g(an)

∂ an

∂ an
∂ wi

=
N∑

n=1

(yn − tn) g ′(an) xni

=
N∑

n=1

(yn − tn) g(an) (1− g(an)) xni
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Another training criterion – cross-entropy error

Training problem with the mean squared error (MSE)
criterion with the sigmoid function

EMSE(w) =
1

2

N∑
n=1

( yn − tn )2 , yn = g(an)

∂ EMSE(w)

∂ wi
=

N∑
n=1

(yn − tn) g ′(an) xni , g ′(a) = g(a)(1− g(a))

For such a that g(a) ≈ 0 or 1, g ′(a) ≈ 0.

Cross-entropy error (NE)

EH(w) = − 1

N

N∑
n=1

{ tn ln yn + (1−tn) ln (1−yn) }

It can be shown that:

∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(yn − tn) xni
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Other activation functions (NE)

Tanh

g(a) = tanh(a) =
1− e−2a

1 + e−2a

Mapping (−∞,+∞) → (−1, 1)
0 (zero) centred → faster convergence than sigmoid
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ReLU (Rectified Linear Unit)

g(a) = max(0, a)

Several times faster than tanh.
’Dying ReLU’ problem – a unit of outputting 0 always
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Exercise

1 Show networks with linear nodes in all hidden layers
reduce to single-layer networks.

2 Prove that the derivative of the logistic sigmoid function
g(a) is given as g ′(a) = g(a) (1− g(a)), and sketch the
graph of it.

3 Explain about the learning rate η for the gradient descent
method.

4 Explain the problem with the training of a neural network
with the MSE criterion when the sigmoid function is used
as the activation function.

5 (NE) Prove that the partial derivative of the cross-entropy
error is given as

∂ EH(w)

∂ wi
=

1

N

N∑
n=1

(yn − tn) xni .
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Summary

Limitations of Perceptron

Solutions to the problems

Neural network with differentiable non-linear functions
(e.g. logistic sigmoid function)

Training of the network with the gradient descent
algorithm

Considered only a single-layer network with a
single-output node

A very good reference:
http://neuralnetworksanddeeplearning.com/
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