	Today's Schedule	Decision regions
Inf2b - Learning Lecture 10: Discriminant functions	 Decision Regions Decision Boundaries for minimum error rate classification Discriminant Functions 	 Recall Bayes' Rule: P(C_k x) = p(x C_k)P(C_k)/p(x) Given an unseen point x, we assign to the class for which P(C_k x) is largest. (k* = arg max_k P(C_k x)) Thus x-space (the input space) may be regarded as being divided into decision regions R_k such that a point falling in R_k is assigned to class C_k. Decision region R_k need not be contiguous, but may consist of several disjoint regions are called with class C_k. The boundaries between these regions are called decision boundaries. (Recall the examples of decision boundaries by k-NN classification in Chapter 4)
Gaussians estimated from data	Inf2b - Learning: Lecture 10 Discriminant functions 2 Decision Regions	IntZb - Learning: Lecture 10 Discriminant functions 3 Placement of decision boundaries
Inf2b-Learning: Lecture 10 Discriminant functions 1	Decision regions for 3-cleas example	• Consider a 1-dimensional feature space (x) and two classes C_1 and C_2 . • How to place the decision boundary to minimise the probability of misclassification (based on $p(x, C_k)$)? • $\int_{0}^{0} \int_{0}^{0} \int_$
Decision regions and misclassification	Minimising probability of misclassification	Minimising probability of misclassification (cont.)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	 P(error R₁, R₂) = ∫_{R₂} p(x C₁) P(C₁) dx + ∫_{R₁} p(x C₂) P(C₂) dx If there is x_e ∈ R₂ such that p(x_e C₁)P(C₁) > p(x_e C₂)P(C₂), letting R₂[*] = R₂ - {x_e} and R₁[*] = R₁ + {x_e} gives P(error R₁, R₂) P(error) is minimised by assigning each point to the class with the maximum posterior probability (Bayes decision rule / MAP decision rule / minimum error rate classification). This justification for the maximum posterior probability may be extended to D-dimensional feature vectors and K classes 	After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 200 \hat{x} denotes the current decision boundary, which causes error shown in red, green, and blue regions. The error is minimised by locating the boundary at x_0 .

Discriminant functions	Discriminant functions for Gaussian pdfs	Discriminant functions for Gaussian pdfs (cont.)
 We can express a classification rule in terms of a discriminant function y_k(x) for each class, such that x is assigned to class C_k if: y_k(x) > y_ℓ(x) ∀ ℓ ≠ k If we assign x to class C with the highest posterior probability P(C x), then the log posterior probability forms a suitable discriminant function: y_k(x) = ln p(x C_k) + ln P(C_k) Decision boundaries between C_k and C_ℓ are defined when the discriminant functions are equal: y_k(x) = y_ℓ(x) Decision boundaries are not changed by monotonic transformations (such as taking the log) of the discriminant functions. 	• What is the form of the discriminant function when using a Gaussian pdf? $p(\mathbf{x} \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{(2\pi)^{D/2} \boldsymbol{\Sigma}_k ^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)\right)$ • If the discriminant function is the log posterior probability: $y_k(\mathbf{x}) = \ln p(\mathbf{x} C_k) + \ln P(C_k)$ • Then, substituting in the log probability of a Gaussian and dropping constant terms we obtain: $y_k(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) - \frac{1}{2} \ln \boldsymbol{\Sigma}_k + \ln P(C_k)$ • This function is quadratic in \mathbf{x}	• To see if the function is really quadratic in x, $(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)$ $= \mathbf{x}^T \boldsymbol{\Sigma}_k^{-1} \mathbf{x} - \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \mathbf{x} - \mathbf{x}^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k + \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k$ $= \mathbf{x}^T \boldsymbol{\Sigma}_k^{-1} \mathbf{x} - 2\boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \mathbf{x} + \boldsymbol{\mu}_k^T \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k$ • In 2-D case, let $\boldsymbol{\Sigma}_k^{-1} = A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $\mathbf{x}^T \boldsymbol{\Sigma}_k^{-1} \mathbf{x} = \mathbf{x}^T A \mathbf{x}$ $= (x_1 \ x_2) \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $= a_{11} x_1^2 + (a_{12} + a_{21}) x_1 x_2 + a_{22} x_2^2$ See Note 10 for details.
Gaussians estimated from training data	Decision Regions	Gaussians with equal covariance
ht2b - Learning: Lecture 10 Discriminant functions 13	Decision regions for 3-class example	$y_{k}(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{k}) - \frac{1}{2} \ln \boldsymbol{\Sigma}_{k} + \ln P(C_{k})$ $= -\frac{1}{2}(\mathbf{x}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} - 2\boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{x} + \boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{\mu}_{k}) - \frac{1}{2} \ln \boldsymbol{\Sigma}_{k} + \ln P(C_{k})$ • Consider the special case in which the Gaussian pdfs for each class all share the same class-independent covariance matrix: $\boldsymbol{\Sigma}_{k} = \boldsymbol{\Sigma}, \forall C_{k}$ $y_{k}(\mathbf{x}) = (\boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}^{-1}) \mathbf{x} - \frac{1}{2} \boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{k} + \ln P(C_{k})$ $= \mathbf{w}_{k}^{T} \mathbf{x} + \mathbf{w}_{k0} = w_{kD} \mathbf{x}_{D} + \dots + w_{k1} \mathbf{x}_{1} + w_{k0}$ where $\mathbf{w}_{k}^{T} = \boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}^{-1}, w_{k0} = -\frac{1}{2} \boldsymbol{\mu}_{k}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{k} + \ln P(C_{k})$ • This is called a linear discriminant function, as it is a linear function of \mathbf{x} .
Gaussians with equal covariance (cont.)	Gaussians estimated from the data: Σ shared	Decision Regions: Σ shared
• In two dimensions the boundary is a line • In three dimensions it is a plane • In D dimensions it is a hyperplane (i.e. { $\mathbf{x} \mid \mathbf{w}_k^T \mathbf{x} + \mathbf{w}_{k0} = 0$ })		Decision regions: Equal Covariance Gaussians

Inf2b - Learning: Lecture 10 Discriminant functions

17

Inf2b - Learning: Lecture 10 Discriminant functions

Inf2b - Learning: Lecture 10 Discriminant functions

16

Testing data (Non-equal covariance)	Testing data (Equal covariance)	Results
Int2b - Learning: Lecture 10 Discriminant functions 10 Discriminant fu	1026 - Learning: Letter 10	• Non-equal covariance Gaussians $\begin{array}{c c c c c c c c c c c c c c c c c c c $
Spherical Gaussians with Equal Covariance	Two-class linear discriminants	Geometry of a two-class linear discriminant
• Spherical Gaussians: $\Sigma = \sigma^2 \mathbf{I}$ $\Rightarrow \Sigma = \sigma^{2D}, \Sigma^{-1} = \frac{1}{\sigma^2} \mathbf{I}$ $y_k(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \mu_k)^T \Sigma_k^{-1} (\mathbf{x} - \mu_k) - \frac{1}{2} \ln \Sigma_k + \ln P(C_k)$ $= -\frac{1}{2\sigma^2} (\mathbf{x} - \mu_k)^T (\mathbf{x} - \mu_k) - \frac{1}{2} \ln \sigma^{2D} + \ln P(C_k)$ $y_k(\mathbf{x}) = -\frac{1}{2\sigma^2} \mathbf{x} - \mu_k ^2 + \ln P(C_k)$ • If equal prior probabilities are assumed, $y_k(\mathbf{x}) = - \mathbf{x} - \mu_k ^2$ The decision rule: "assign a test data to the class whose mean is closest". The class means (μ_k) may be regarded as class templates or prototypes. <u>Int2b - Learning: Lecture 10</u> <u>Discriminant functions</u> 20	 For a two class problem, the log odds can be used as a single discriminant function: y(x) = ln P(C₁ x) / P(C₂ x) = ln p(x C₁) P(C₁) / (x C₂) P(C₂) = ln p(x C₁) - ln p(x C₂) + ln P(C₁) - ln P(C₂) If the pdf is a Gaussian with the shared covariance matrix, we have a linear discriminant: y(x) = w^Tx + w₀ w and w₀ are functions of μ₁, μ₂, Σ, P(C₁), and P(C₂). w is a normal vector to the decision boundary. Let a and b be two points on the decision boundary w^Ta + w₀ = w^Tb + w₀ = 0 ⇒ w^T(a - b) = 0 <i>i.e.</i> w ⊥ (a - b) 	• w is normal to the decision boundary (hyperplane), w ^T x + w ₀ = 0. • If p is the point on the hyperplane closest to the origin, then the normal distance from the hyperplane to the origin is given by: $\ p\ = \frac{w^{T}p}{\ w\ } = \frac{ w_{0} }{\ w\ }$ $0 = w^{T}p + w_{0} = \ w\ \ p\ \cos 0 + w_{0} = \ w\ \ p\ \pm w_{0}$ Int2b - Learning: Lecture 10 Discriminant functions 24
Exercise	Summary	
 Considering a classification problem of two classes, where each class is modelled with a <i>D</i>-dimensional Gaussian distribution. Derive the formula for the decision boundary, and show that it is quadratic in x. Considering a classification problem of two classes, whose discriminant function takes the form, y(x) = w^Tx + w₀. Confirm that the decision boundary is a straight line when <i>D</i> = 2. Confirm that the weight vector w is a normal vector to the decision boundary. Try Lab-7 on Classification with Gaussians 	 Obtaining decision boundaries from probability models and a decision rule Minimising the probability of error Discriminant functions and Gaussian pdfs Linear discriminants and Gaussians with equal covariance In next lectures, we will see discriminant functions trained with different criteria. 	

Inf2b - Learning: Lecture 10 Discriminant functions

26