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Today's Schedule

Decision regions

@ Decision Regions

© Decision Boundaries for minimum error rate classification

© Discriminant Functions
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@ Recall Bayes' Rule:
x| C)P(C,
P(Ck\x)= P( I k) ( k)
p(x)

@ Given an unseen point x, we assign to the class for which
P(Ci|x) is largest. (k™ = argmax, P(Cy|x))

o Thus x-space (the input space) may be regarded as being
divided into decision regions R such that a point falling
in Ry is assigned to class Cg.

@ Decision region Ry need not be contiguous, but may
consist of several disjoint regions each associated with
class C.

@ The boundaries between these regions are called decision
boundaries. (Recall the examples of decision boundaries by
k-NN classification in Chapter 4)
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Gaussians estimated from data

Decision Regions

Placement of decision boundaries
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o Consider a 1-dimensional feature space (x) and two
classes C; and G,.

@ How to place the decision boundary to minimise the
probability of misclassification (based on p(x, Cy))?

— Ri— | +— Rr —

— R1— | +— Ry —
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Decision regions and misclassification

Minimising probability of misclassification

Minimising probability of misclassification (cont.)

Confusion matrix Normalised version

In\Out G G In\Out C1 G
G | N N G| Pu Po P+ Pp=1
G| Noi Ny G | P Py Py + Py =1

P11 = P(X S R1|C1) = ,X/flll?
Py = P(x € R1|G) = B,

2

Py = P(x € Ra|C1) = B2

1

Py = P(x € Ra|G) = f2

Ny = Nyg+Nag, No=Noy+Noo, P(Gr) =z, P(G)

M
+N2? T NN

Ni1+ N
P(correct) = ﬁ = P11 P(G1) + P22 P(C2)
N+ Noy
P = Betr o pea) + Pa P(C
(error) A 12 P(G1) + P21 P(G)

— [ ey PG dx+ [ plxi) P(C) dx
Ra R1
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P(error|R1, R2) = /Rp(x| G)P(G) dx + /72P(X| G) P(G) dx

1

o If there is x. € R, such that p(xe|C1)P(C1) > p(xe| G)P(G),
letting R5 = Ro — {x.} and R} = Ry + {x.} gives
P(error|R}, R%) < P(error|R1,R»)

@ P(error) is minimised by assigning each point to the class with
the maximum posterior probability (Bayes decision rule / MAP
decision rule / minimum error rate classification).

@ This justification for the maximum posterior probability may be
extended to D-dimensional feature vectors and K classes
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Zo z

p(z,C1)

p(z,C2)

R4 Ra

After Fig. 1.24, C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
X denotes the current decision boundary, which causes error shown in red,
green, and blue regions. The error is minimised by locating the boundary

at x,.
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Discriminant functions

Discriminant functions for Gaussian pdfs

Discriminant functions for Gaussian pdfs (cont.)

@ We can express a classification rule in terms of a
discriminant function y,(x) for each class, such that x is
assigned to class Cj if:

yi(x) > ye(x) VL#k
o If we assign x to class C with the highest posterior
probability P(C|x), then the log posterior probability
forms a suitable discriminant function:

yi(x) = In p(x| Cic) + In P(Cy)
@ Decision boundaries between C, and C; are defined when
the discriminant functions are equal: yi(x) = yu(x)
@ Decision boundaries are not changed by monotonic
transformations (such as taking the log) of the
discriminant functions.
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@ What is the form of the discriminant function when using
a Gaussian pdf?

— 1 ! Ts—1
p(x| pk;, Bi) = Wexp <—§(x — ) B (x— Mk))
o If the discriminant function is the log posterior probability:
Ye(x) = Inp(x|C) + In P(Ck)

@ Then, substituting in the log probability of a Gaussian
and dropping constant terms we obtain:

1 1
yr(x) = —E(x — )T (x - k) — 3 In|2g| + In P(Cy)
@ This function is quadratic in x
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o To see if the function is really quadratic in x,
(x = i) T (x — i)
= xS = S = X T ] 5

= XTE;1X - ZMZ—E;IX + ;4[2;1;4,(

_ a;; a
@ In 2-D case, let Ekl =A= 1€z )
az1 ax

xTEx = xTAx

a1 a2 X1
(x %)
a1 ax X2

2 2
ajix; + (812 + 821)X1X2 + axnXx;

See Note 10 for details.
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Gaussians estimated from training data

Decision Regions

Gaussians with equal covariance
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1 _ 1
yk(x)=—E(x—p,k)TZkl(x—p,k)—E In |24|+In P(Ck)
1 _ _ _ 1
:—E(XTEk1x—2,u[2k1x+u[2]k1uk)—§ In || +In P(Ci)
@ Consider the special case in which the Gaussian pdfs for
each class all share the same class-independent covariance
matrix: X, =3, VG
_ 1 _
e(®) = (17 x = Sl Z i+ In PG

T
= Wy X+ Wko = WkpXp + -+ + Wia X1 + Wio

1
where WZ:NZE B vka:prkTE lukJrInP(Ck)

@ This is called a linear discriminant function, as it is a
linear function of x.
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Gaussians with equal covariance (cont.)

Gaussians estimated from the data: X shared

Decision Regions: ¥ shared

X2,

: c2
C1
x1
@ In two dimensions the boundary is a line
@ In three dimensions it is a plane

@ In D dimensions it is a hyperplane
(ie. {x]w/x+wp = 0})
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Decision regions: Equal Covariance Gaussians
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Testing data (Non-equal covariance)

Testing data (Equal covariance)

Results
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@ Non-equal covariance Gaussians
Predicted class

Test Data | A B C
Actual A |77 15 8
class B| 5 88 7

cl 9 2 89

Fraction correct: (77 + 88 + 89)/300 = 254/300
@ Equal covariance Gaussians
Predicted class
Test Data | A B C
Actual A | 80 14 6
class B | 10 90 0
c| 8 6 86

Fraction correct: (80 + 90 + 86)/300 = 256,/300
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Discriminant functions

0.85.

0.85.

Spherical Gaussians with Equal Covariance

Two-class linear discriminants

Geometry of a two-class linear discriminant

@ Spherical Gaussians: X = oI
1
= [B]=0" ==l
1 7 1
$) = 3¢ — ) TS (x — gue) — 2 In[] +1n P(CL)
1 1
= —QUQ(X — )T (x — i) — 5 Ino?P +In P(Cy)

1
Y1) =~ gollx — el + I P(Co)

@ If equal prior probabilities are assumed,

yi(x) = =[x = pe?
The decision rule:
mean is closest”.

“assign a test data to the class whose

The class means (px) may be regarded as class templates
or prototypes.
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@ For a two class problem, the log odds can be used as a
single discriminant function:
P(G|x) p(x| G) P(G)
x) = In =1In
0= B(G 0 =" blxl G) P(C)
=Inp(x| G) —Inp(x| &) +InP(C) — In P(G)

@ If the pdf is a Gaussian with the shared covariance matrix,
we have a linear discriminant:
y(x) = wTx+ wy
w and wyp are functions of w1, o, 3, P(C1),and P(G).
@ w is a normal vector to the decision boundary.
Let a and b be two points on the decision boundary
wlatwy=wb+wy=0 = w'(a—b)=0
ji,e. wl(a—h)
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@ w is normal to the
decision boundary

(hyperplane),
%3 w’x+wp =0.
y(X)= WX + W, =0 o If p is the point on the
hyperplane closest to the
P w origin, then the normal
distance from the
hyperplane to the origin
llpll:l%(lil is given by: i
Il = 2P — Leol
° ; wll~ [wl]

0=w'p+w
= |[wl[[[p]| cos 0 + wo
= [wllllpl| & wo
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Exercise

Summary

@ Considering a classification problem of two classes, where
each class is modelled with a D-dimensional Gaussian
distribution. Derive the formula for the decision boundary,
and show that it is quadratic in x.

@ Considering a classification problem of two classes, whose
discriminant function takes the form, y(x) = w”x + w.
o Confirm that the decision boundary is a straight line
when D = 2.

o Confirm that the weight vector w is a normal vector to
the decision boundary.

© Try Lab-7 on Classification with Gaussians
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@ Obtaining decision boundaries from probability models
and a decision rule

@ Minimising the probability of error
@ Discriminant functions and Gaussian pdfs

o Linear discriminants and Gaussians with equal covariance

@ In next lectures, we will see discriminant functions trained
with different criteria.
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