Inf2b Learning and Data
Lecture 10: Discriminant functions

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2019/infr08009inf2blearning
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2019
1. Decision Regions
2. Decision Boundaries for minimum error rate classification
3. Discriminant Functions
Recall Bayes’ Rule:

\[P(C_k|x) = \frac{p(x|C_k)P(C_k)}{p(x)} \]

Given an unseen point \(x \), we assign to the class for which \(P(C_k|x) \) is largest. (\(k^* = \arg \max_k P(C_k|x) \))

Thus \(x \)-space (the input space) may be regarded as being divided into decision regions \(R_k \) such that a point falling in \(R_k \) is assigned to class \(C_k \).

Decision region \(R_k \) need not be contiguous, but may consist of several disjoint regions each associated with class \(C_k \).

The boundaries between these regions are called decision boundaries. (Recall the examples of decision boundaries by \(k \)-NN classification in Chapter 4)
Gaussians estimated from data
Decision Regions

Decision regions for 3-class example

Inf2b Learning and Data: Lecture 10
Discriminant functions
Consider a 1-dimensional feature space \((x)\) and two classes \(C_1\) and \(C_2\).

How to place the decision boundary to minimise the probability of misclassification (based on \(p(x, C_k)\))?
Decision regions and misclassification

Confusion matrix

<table>
<thead>
<tr>
<th>In\Out</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>N_{11}</td>
<td>N_{12}</td>
</tr>
<tr>
<td>C_2</td>
<td>N_{21}</td>
<td>N_{22}</td>
</tr>
</tbody>
</table>

\[\Rightarrow \]

Normalised version

<table>
<thead>
<tr>
<th>In\Out</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>P_{11}</td>
<td>P_{12}</td>
</tr>
<tr>
<td>C_2</td>
<td>P_{21}</td>
<td>P_{22}</td>
</tr>
</tbody>
</table>

\[P_{11} + P_{12} = 1 \]
\[P_{21} + P_{22} = 1 \]

\[P_{11} = P(x \in R_1 | C_1) = \frac{N_{11}}{N_1}, \quad P_{12} = P(x \in R_2 | C_1) = \frac{N_{12}}{N_1} \]
\[P_{21} = P(x \in R_1 | C_2) = \frac{N_{21}}{N_2}, \quad P_{22} = P(x \in R_2 | C_2) = \frac{N_{22}}{N_2} \]

\[N_1 = N_{11} + N_{12}, \quad N_2 = N_{21} + N_{22}, \quad P(C_1) = \frac{N_1}{N_1 + N_2}, \quad P(C_2) = \frac{N_2}{N_1 + N_2} \]

\[P(\text{correct}) = \frac{N_{11} + N_{22}}{N_1 + N_2} = P_{11} P(C_1) + P_{22} P(C_2) \]

\[P(\text{error}) = \frac{N_{12} + N_{21}}{N_1 + N_2} = P_{12} P(C_1) + P_{21} P(C_2) \]

\[= \int_{R_2} p(x | C_1) P(C_1) \, dx + \int_{R_1} p(x | C_2) P(C_2) \, dx \]
Minimising probability of misclassification

\[P(\text{error}|\mathcal{R}_1, \mathcal{R}_2) = \int_{\mathcal{R}_2} p(x|C_1) P(C_1) \, dx + \int_{\mathcal{R}_1} p(x|C_2) P(C_2) \, dx \]

- If there is \(x_e \in \mathcal{R}_2 \) such that \(p(x_e|C_1)P(C_1) > p(x_e|C_2)P(C_2) \),

 letting \(\mathcal{R}^*_2 = \mathcal{R}_2 - \{x_e\} \) and \(\mathcal{R}^*_1 = \mathcal{R}_1 + \{x_e\} \) gives

 \[P(\text{error}|\mathcal{R}^*_1, \mathcal{R}^*_2) < P(\text{error}|\mathcal{R}_1, \mathcal{R}_2) \]

- \(P(\text{error}) \) is minimised by assigning each point to the class with the maximum posterior probability (Bayes decision rule / MAP decision rule / minimum error rate classification).

- This justification for the maximum posterior probability may be extended to \(D \)-dimensional feature vectors and \(K \) classes
Minimising probability of misclassification (cont.)

\[
\hat{x} \text{ denotes the current decision boundary, which causes error shown in red, green, and blue regions. The error is minimised by locating the boundary at } x_o.
\]
We can express a classification rule in terms of a discriminating function $y_k(x)$ for each class, such that x is assigned to class C_k if:

$$y_k(x) > y_\ell(x) \quad \forall \ell \neq k$$

If we assign x to class C with the highest posterior probability $P(C|x)$, then the log posterior probability forms a suitable discriminant function:

$$y_k(x) = \ln p(x|C_k) + \ln P(C_k)$$

Decision boundaries between C_k and C_ℓ are defined when the discriminant functions are equal: $y_k(x) = y_\ell(x)$

Decision boundaries are not changed by monotonic transformations (such as taking the log) of the discriminant functions.
What is the form of the discriminant function when using a Gaussian pdf?

\[p(x|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{D/2}|\Sigma_k|^{1/2}} \exp \left(-\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) \right) \]

If the discriminant function is the log posterior probability:

\[y_k(x) = \ln p(x|C_k) + \ln P(C_k) \]

Then, substituting in the log probability of a Gaussian and dropping constant terms we obtain:

\[y_k(x) = -\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) - \frac{1}{2} \ln |\Sigma_k| + \ln P(C_k) \]

This function is quadratic in \(x \)
To see if the function is really quadratic in x,

$$
(x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k)
$$

$$
= x^T \Sigma_k^{-1} x - \mu_k^T \Sigma_k^{-1} x - x^T \Sigma_k^{-1} \mu_k + \mu_k^T \Sigma_k^{-1} \mu_k
$$

$$
= x^T \Sigma_k^{-1} x - 2 \mu_k^T \Sigma_k^{-1} x + \mu_k^T \Sigma_k^{-1} \mu_k
$$

In 2-D case, let $\Sigma_k^{-1} = A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$,

$$
x^T \Sigma_k^{-1} x = x^T A x
$$

$$
= \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
$$

$$
= a_{11} x_1^2 + (a_{12} + a_{21}) x_1 x_2 + a_{22} x_2^2
$$

See Note 10 for details.
Gaussians estimated from training data
Decision Regions

Decision regions for 3-class example

Inf2b Learning and Data: Lecture 10 Discriminant functions
Gaussians with equal covariance

\[y_k(x) = -\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) - \frac{1}{2} \ln |\Sigma_k| + \ln P(C_k) \]

\[= -\frac{1}{2} (x^T \Sigma_k^{-1} x - 2 \mu_k^T \Sigma_k^{-1} x + \mu_k^T \Sigma_k^{-1} \mu_k) - \frac{1}{2} \ln |\Sigma_k| + \ln P(C_k) \]

- Consider the special case in which the Gaussian pdfs for each class all share the same class-independent covariance matrix: \(\Sigma_k = \Sigma, \forall C_k \)

\[y_k(x) = (\mu_k^T \Sigma^{-1}) x - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \ln P(C_k) \]

\[= w_k^T x + w_{k0} = w_{kD} x_D + \cdots + w_{k1} x_1 + w_{k0} \]

where \(w_k^T = \mu_k^T \Sigma^{-1} \), \(w_{k0} = -\frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \ln P(C_k) \)

- This is called a linear discriminant function, as it is a linear function of \(x \).
Gaussians with equal covariance (cont.)

- In two dimensions the boundary is a line
- In three dimensions it is a plane
- In D dimensions it is a hyperplane
 (i.e. $\{x \mid w_k^T x + w_{k0} = 0\}$)
Gaussians estimated from the data: Σ shared
Decision Regions: Σ shared

Decision regions: Equal Covariance Gaussians

$\begin{align*}
 x_1 & \quad x_2 \\
 \text{Decision regions: Equal Covariance Gaussians} \\
 \text{Inf2b Learning and Data: Lecture 10} \\
 \text{Discriminant functions}
\end{align*}$
Testing data (Non-equal covariance)
Testing data (Equal covariance)
Results

- **Non-equal covariance Gaussians**

<table>
<thead>
<tr>
<th>Test Data</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual A</td>
<td>A 77 B 15 C 8</td>
</tr>
<tr>
<td>class B</td>
<td>A 5 B 88 C 7</td>
</tr>
<tr>
<td>C</td>
<td>A 9 B 2 C 89</td>
</tr>
</tbody>
</table>

Fraction correct: \((77 + 88 + 89)/300 = 254/300 \approx 0.85\).

- **Equal covariance Gaussians**

<table>
<thead>
<tr>
<th>Test Data</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual A</td>
<td>A 80 B 14 C 6</td>
</tr>
<tr>
<td>class B</td>
<td>A 10 B 90 C 0</td>
</tr>
<tr>
<td>C</td>
<td>A 8 B 6 C 86</td>
</tr>
</tbody>
</table>

Fraction correct: \((80 + 90 + 86)/300 = 256/300 \approx 0.85\).
Spherical Gaussians with Equal Covariance

- **Spherical Gaussians:** \(\Sigma = \sigma^2 I \)

 \[\Rightarrow |\Sigma| = \sigma^{2D}, \quad \Sigma^{-1} = \frac{1}{\sigma^2} I \]

 \[y_k(x) = -\frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) - \frac{1}{2} \ln |\Sigma_k| + \ln P(C_k) \]

 \[= -\frac{1}{2\sigma^2} (x - \mu_k)^T (x - \mu_k) - \frac{1}{2} \ln \sigma^{2D} + \ln P(C_k) \]

 \[y_k(x) = -\frac{1}{2\sigma^2} \|x - \mu_k\|^2 + \ln P(C_k) \]

- If equal prior probabilities are assumed,

 \[y_k(x) = -\|x - \mu_k\|^2 \]

 The decision rule: “assign a test data to the class whose mean is closest”.

 The class means \((\mu_k)\) may be regarded as class **templates** or **prototypes**.
Two-class linear discriminants

- For a two class problem, the log odds can be used as a single discriminant function:

\[y(x) = \ln \frac{P(C_1 | x)}{P(C_2 | x)} = \ln \frac{p(x | C_1) P(C_1)}{p(x | C_2) P(C_2)} \]
\[= \ln p(x | C_1) - \ln p(x | C_2) + \ln P(C_1) - \ln P(C_2) \]

- If the pdf is a Gaussian with the shared covariance matrix, we have a linear discriminant:

\[y(x) = w^T x + w_0 \]

\(w\) and \(w_0\) are functions of \(\mu_1, \mu_2, \Sigma, P(C_1),\) and \(P(C_2)\).

- \(w\) is a normal vector to the decision boundary.

Let \(a\) and \(b\) be two points on the decision boundary

\[w^T a + w_0 = w^T b + w_0 = 0 \quad \Rightarrow \quad w^T (a - b) = 0 \]

i.e. \(w \perp (a - b)\)
Geometry of a two-class linear discriminant

- **\(\mathbf{w} \)** is normal to the decision boundary (hyperplane),
 \[\mathbf{w}^T \mathbf{x} + w_0 = 0. \]

- If \(\mathbf{p} \) is the point on the hyperplane closest to the origin, then the normal distance from the hyperplane to the origin is given by:
 \[\| \mathbf{p} \| = \frac{\mathbf{w}^T \mathbf{p}}{\| \mathbf{w} \|} = \frac{|w_0|}{\| \mathbf{w} \|} \]

\[0 = \mathbf{w}^T \mathbf{p} + w_0 = \| \mathbf{w} \| \| \mathbf{p} \| \cos \theta + w_0 = \| \mathbf{w} \| \| \mathbf{p} \| \pm w_0 \]
1. Considering a classification problem of two classes, where each class is modelled with a D-dimensional Gaussian distribution. Derive the formula for the decision boundary, and show that it is quadratic in \mathbf{x}.

2. Considering a classification problem of two classes, whose discriminant function takes the form, $y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$.
 - Confirm that the decision boundary is a straight line when $D = 2$.
 - Confirm that the weight vector \mathbf{w} is a normal vector to the decision boundary.

3. Try Lab-7 on Classification with Gaussians
Summary

- Obtaining decision boundaries from probability models and a decision rule
- Minimising the probability of error
- Discriminant functions and Gaussian pdfs
- Linear discriminants and Gaussians with equal covariance
- In next lectures, we will see discriminant functions trained with different criteria.