Inf2b - Learning

Lecture 9: Classification with Gaussians

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Inf2b - Learning: Lecture 9 Classification with Gaussians

Today's Schedule

Classification with Gaussians

- 1 The multidimensional Gaussian distribution (recap.)
- Practical topics on covariance matrix
- Bayes theorem and probability densities
- 4 1-dimensional Gaussian classifier
- Multivariate Gaussian classifier
- 6 Evaluation of classifier performance

Inf2b - Learning: Lecture 9 Classification with Gaussians

The multidimensional Gaussian distribution

• The *D*-dimensional vector $\mathbf{x} = (x_1, \dots, x_D)^T$ is multivariate Gaussian if it has a probability density function of the following form:

$$p(\mathbf{x} \,|\, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

The pdf is parameterised by the mean vector μ and the covariance matrix Σ .

- The 1-dimensional Gaussian is a special case of this pdf
- The argument to the exponential $\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)$ is referred to as a *quadratic form*, and it is always *non-negative*.

Inf2b - Learning: Lecture 9 Classification with Gaussian

Covariance matrix

Covariance matrix (with ML estimation):

$$\Sigma = \left(egin{array}{ccc} \sigma_{11} & \cdots & \sigma_{1D} \ dots & \ddots & dots \ \sigma_{D1} & \cdots & \sigma_{DD} \end{array}
ight) = rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - oldsymbol{\mu}) (\mathbf{x}_n - oldsymbol{\mu})^{\mathsf{T}}$$

where
$$\mathbf{x}_n = (x_{n1}, \dots, x_{nD})^T$$

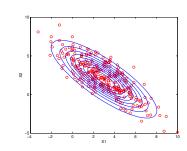
 $\boldsymbol{\mu} = (\mu_1, \dots, \mu_D)^T$

- ullet Symmetric : $oldsymbol{\Sigma}^T = oldsymbol{\Sigma}$, and $(oldsymbol{\Sigma}^{-1})^T = oldsymbol{\Sigma}^{-1}$
- ullet Semi-positive definite: $oldsymbol{x}^{ au} oldsymbol{\Sigma} oldsymbol{x} \geq 0$, and $oldsymbol{x}^{ au} oldsymbol{\Sigma}^{-1} oldsymbol{x} \geq 0$

Inf2b - Learning: Lecture 9 Classification with Gaussi

• cf: sample covariance matrix, which uses $\frac{1}{N-1}$.

Maximum likelihood fit to a Gaussian



Inf2b - Learning: Lecture 9 Classification with Gaussian

Tips on calculating covariance matrices

MATLAB is optimised for matrix/vector operations

$$\sum_{(D \times D)} = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)(x_n - \mu)^T$$

$$= \frac{1}{N} (x_1 - \mu, \dots, x_N - \mu) \begin{pmatrix} x_1^T - \mu^T \\ \vdots \\ x_N^T - \mu^T \end{pmatrix}$$

$$= \frac{1}{N} (X - M_N)^T (X - M_N) \stackrel{(N \times D)}{\longrightarrow} (X - M_N)$$

$$X = \begin{bmatrix} X_1^T \\ \vdots \\ X_N^T \end{bmatrix} = \begin{bmatrix} X_{11}, \dots, X_{1D} \\ \vdots & \vdots \\ X_{N1}, \dots, X_{ND} \end{bmatrix}, \quad M_N = \begin{bmatrix} M \\ \vdots \\ M \end{bmatrix} = \begin{bmatrix} \mu_1, \dots, \mu_D \\ \vdots & \vdots \\ \mu_1, \dots, \mu_D \end{bmatrix}$$
$$M = \mu^T = \begin{bmatrix} \mu_1, \dots, \mu_D \end{bmatrix}, \qquad = \frac{1}{N} \mathbf{1}_{NN} X$$

D) Inf2b - Learning: Lecture 9 Classification with Gauss

Properties of covariance matrix

$\Sigma = V D V^{T}$ $= \begin{pmatrix} v_{11} & \cdots & v_{1D} \\ \vdots & \ddots & \vdots \\ v_{D1} & \cdots & v_{DD} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ & \ddots & \\ 0 & & \lambda_{D} \end{pmatrix} \begin{pmatrix} v_{11} & \cdots & v_{1D} \\ \vdots & \ddots & \vdots \\ v_{D1} & \cdots & v_{DD} \end{pmatrix}^{T}$

- $= (\mathbf{v}_1, \dots, \mathbf{v}_D) \operatorname{Diag}(\lambda_1, \dots, \lambda_D) (\mathbf{v}_1, \dots, \mathbf{v}_D)^T$
- ullet $oldsymbol{v}_i$: eigen vector, λ_i : eigen value $oldsymbol{\Sigma}$ $oldsymbol{v}_i=\lambda_i$ $oldsymbol{v}_i$
- $\lambda_i \geq 0$, $\|\mathbf{v}_i\| = 1$
- $|\Sigma| = \prod_{i=1}^{D} \lambda_i$
- $\bullet \ \sum_{i=1}^{D} \sigma_{ii} = \sum_{i=1}^{D} \lambda_{i}$

Inf2b - Learning: Lecture 9 Classification with Gaussian

Properties of covariance matrix

- rank(Σ)
 - the number of linearly independent columns (or rows)
 - the number of bases (i.e. the dimension of the column space)

$$\operatorname{rank}(\mathbf{\Sigma}) = D \rightarrow \forall_i : \lambda_i > 0$$

$$\forall_{i \neq j} : \mathbf{v}_i \perp \mathbf{v}_j$$

$$|\mathbf{\Sigma}| > 0$$

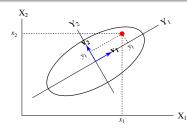
$$\operatorname{rank}(\mathbf{\Sigma}) \ < \ D \ \ \to \ \ \exists_i \ : \ \lambda_i = 0$$

$$\exists_{(i,j)} \ : \ \rho(x_i,x_j) = 1$$

$$|\mathbf{\Sigma}| = 0$$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Geometry of covariance matrix



Sort eigen values: $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_D$

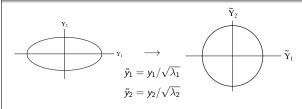
 \mathbf{v}_1 : eigen vector of λ_1 \mathbf{v}_2 : eigen vector of λ_2

$$y_1 = \mathbf{v}_1^T \mathbf{x}$$
, $\operatorname{Var}(y_1) = \lambda_1$

$$y_2 = \mathbf{v}_2^T \mathbf{x}$$
, $\operatorname{Var}(y_2) = \lambda_2$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Geometry of covariance matrix



$$(\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) = (\tilde{\mathbf{y}} - \tilde{\mathbf{u}})^T (\tilde{\mathbf{y}} - \tilde{\mathbf{u}}) = ||\tilde{\mathbf{y}} - \tilde{\mathbf{u}}||^2$$
 where $\tilde{\mathbf{u}} = \left(\frac{\mathbf{v}_1}{\sqrt{\lambda_1}}, \frac{\mathbf{v}_2}{\sqrt{\lambda_2}}\right)^T \mathbf{\mu}$
$$= \left(\frac{\mathbf{v}_1^T \mathbf{\mu}}{\sqrt{\lambda_1}}, \frac{\mathbf{v}_2^T \mathbf{\mu}}{\sqrt{\lambda_2}}\right)^T$$

Inf2b - Learning: Lecture 9 Classification with Gaussian

Problems with the estimation of covariance matrix

- ullet $|\Sigma|
 ightarrow 0$ when
 - N is not large enough (when compared with D) NB: $|\Sigma| = 0$ for N < D
 - There is high dependence (correlation) among variables (e.g. $\rho(\mathbf{x}_i, \mathbf{x}_i) \approx 1$)
- \bullet Σ^{-1} becomes unstable when $|\Sigma|$ is small.
- Solutions?
 - Share Σ among classes (\Rightarrow linear discriminant functions)
 - Assume independence among variables ⇒ a diagonal covariance matrix rather than a 'full' covariance matrix.
 - Reduce the dimensionality by transforming the data into a low-dimensional vector space (e.g. PCA).
 - Another regularisation:
 - Add a small positive number to the diagonal elements $\Sigma \leftarrow \Sigma + \epsilon I$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Shared covariance matrix among classes

• How to estimate the shared covariance:

$$oldsymbol{\Sigma}_k = oldsymbol{\Sigma}$$
 for all $k=1,\ldots,K$

$$egin{aligned} \Sigma &= rac{1}{K} \sum_{k=1}^K \Sigma_k \ &= rac{1}{K} \sum_{k=1}^K rac{1}{N_k} \sum_{n=1}^{N_k} (\pmb{x}_n^{(k)} - \pmb{\mu}^{(k)}) (\pmb{x}_n^{(k)} - \pmb{\mu}^{(k)})^T \end{aligned}$$

• Why is the following not good?

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)(x_n - \mu)^T$$

$$= \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{n=1}^{N} (x_n^{(k)} - \mu)(x_n^{(k)} - \mu)^T$$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Covariance matrix when naive Bayes is assumed

$\Sigma = \begin{pmatrix} \sigma_{11} & 0 \\ & \ddots & \\ 0 & \sigma_{DD} \end{pmatrix}, \qquad \sigma_{ij} = 0 \text{ for } i \neq j$ $p(x | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$ $= p(x_1 | \mu_1, \sigma_{11}) \cdots p(x_D | \mu_D, \sigma_{DD})$

$$= \prod_{i=1}^{D} \left\{ \frac{1}{\sqrt{2\pi\sigma_{ii}}} \exp\left(\frac{-(x_i - \mu_i)^2}{2\sigma_{ii}}\right) \right\}$$

Inf2b - Learning: Lecture 9 Classification with Gauss

Bayes theorem and probability densities

 Rules for probability densities are similar to those for probabilities:

$$p(x, y) = p(x|y) p(y)$$
$$p(x) = \int p(x, y) dy$$

 We may mix probabilities of discrete variables and probability densities of continuous variables:

$$p(x, Z) = p(x|Z) P(Z)$$

• Bayes' theorem for continuous data x and class C:

$$P(C|x) = \frac{p(x|C) P(C)}{p(x)}$$
$$P(C|x) \propto p(x|C) P(C)$$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Bayes theorem and univariate Gaussians

• If p(x|C) is Gaussian with mean μ and variance σ^2 :

$$P(C|x) \propto p(x|C) P(C) = N(x; \mu, \sigma^2) P(C)$$
$$\propto \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) P(C)$$

• The log likelihood LL(x|C) is:

$$\begin{split} \mathit{LL}(x \,|\, \mu, \sigma^2) &= \ln p(x \,|\, \mu, \sigma^2) \\ &= \frac{1}{2} \left(-\ln(2\pi) - \ln \sigma^2 - \frac{(x-\mu)^2}{\sigma^2} \right) \end{split}$$

• The log posterior probability $\ln P(C|x)$ is:

Gaussian pdfs for S and T vs histograms

$$\ln P(C|x) \propto LL(x|C) + \ln P(C)$$

$$\propto \frac{1}{2} \left(-\ln(2\pi) - \ln \sigma^2 - \frac{(x-\mu)^2}{\sigma^2} \right) + \ln P(C)$$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Log probability ratio (log odds)

For a classification problem of two classes: C_1 and C_2 ,

$$\begin{split} \ln \frac{P(C_1|x)}{P(C_2|x)} &= \ln P(C_1|x) - \ln P(C_2|x) \\ &= -\frac{1}{2} \left(\frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{(x - \mu_2)^2}{\sigma_2^2} + \ln \sigma_1^2 - \ln \sigma_2^2 \right) \\ &+ \ln P(C_1) - \ln P(C_2) \end{split}$$

$$\ln P(C_1|x) - \ln P(C_2|x) > 0 \implies C_1$$

$$\ln P(C_1|x) - \ln P(C_2|x) < 0 \implies C_2$$

Example: 1-dimensional Gaussian classifier

• Two classes, S and T, with some observations:

 Assume that each class may be modelled by a Gaussian.
 The estimated mean and variance of each pdf with the maximum likelihood (ML) estimation are given as follows:

$$\mu(S) = 10$$
 $\sigma^{2}(S) = 1$
 $\mu(T) = 12$ $\sigma^{2}(T) = 4$

• The following unlabelled data points are available:

$$x_1 = 10, \quad x_2 = 11, \quad x_3 = 6$$

To which class should each of the data points be assigned?

Assume the two classes have equal prior probabilities.

0.4 p (x|S) \$\tilde{x}\$ 0.3 0.2 0.1 \$\phi(x|T)\$

Inf2b - Learning: Lecture 9 Classification

10

Classification with Gaussians

2.0

Inf2b - Learning: Lecture 9 Classification with Gaussians

Inf2b - Learning: Lecture 9 Classification with Gaussians

Posterior probabilities P(S) = 0.5, P(T) = 0.5p(T|x)p(S|x)0.8 0.4 0.2 10 20 Inf2b - Learning: Lecture 9 Classification with Gaussians

Example: 1-dimensional Gaussian classifier (cont.)

• Take the log odds (posterior probability ratios):

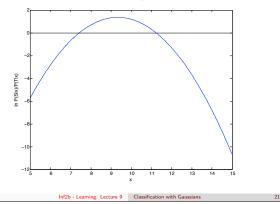
$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_s)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right) + \ln P(S) - \ln P(T)$$

• In the example the priors are equal, so:

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_S)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right)$$
$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right)$$

 \bullet If log odds are less than 0 assign to T, otherwise assign

Test samples: $x_1 = 10$, $x_2 = 11$, $x_3 = 6$



Example: unequal priors

- Now, assume P(S) = 0.3, P(T) = 0.7. Including this prior information, to which class should each of the above test data points, x_1, x_2, x_3 , be assigned?
- Again compute the log odds:

$$\ln \frac{P(S|X=x)}{P(T|X=x)} = -\frac{1}{2} \left(\frac{(x-\mu_S)^2}{\sigma_S^2} - \frac{(x-\mu_T)^2}{\sigma_T^2} + \ln \sigma_S^2 - \ln \sigma_T^2 \right)$$

$$+ \ln P(S) - \ln P(T)$$

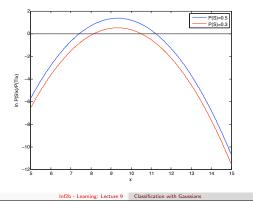
$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right) + \ln P(S) - \ln P(T)$$

$$= -\frac{1}{2} \left((x-10)^2 - \frac{(x-12)^2}{4} - \ln 4 \right) + \ln(3/7)$$

Inf2b - Learning: Lecture 9 Classification with Gaussians

Log odds

Test samples: $x_1 = 10$, $x_2 = 11$, $x_3 = 6$



Multivariate Gaussian classifier

- Multivariate Gaussian (in *D* dimensions): $\rho(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$
- Log likelihood:

$$LL(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{D}{2} \ln(2\pi) - \frac{1}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

- Posterior probability: $p(C|x) \propto p(x|\mu, \Sigma)P(C)$
- Log posterior probability: $\ln P(C \mid \mathbf{x}) \propto -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) - \frac{1}{2} \ln |\mathbf{\Sigma}| + \ln P(C) + ext{const.}$
- Try Q4 of Tutorial 4

Inf2b - Learning: Lecture 9 Classification with Gaussians

Example

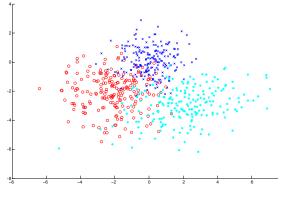
• 2-dimensional data from three classes (A, B, C).

- The classes have equal prior probabilities.
- 200 points in each class
- Load into Matlab ($n \times 2$ matrices, each row is a data point) and display using a scatter plot:

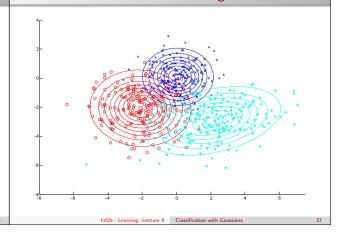
```
xa = load('trainA.dat');
xb = load('trainB.dat');
xc = load('trainC.dat');
scatter(xa(:, 1), xa(:,2), 'r', 'o');
scatter(xb(:, 1), xb(:,2), 'b', 'x');
scatter(xc(:, 1), xc(:,2), 'c', '*');
```

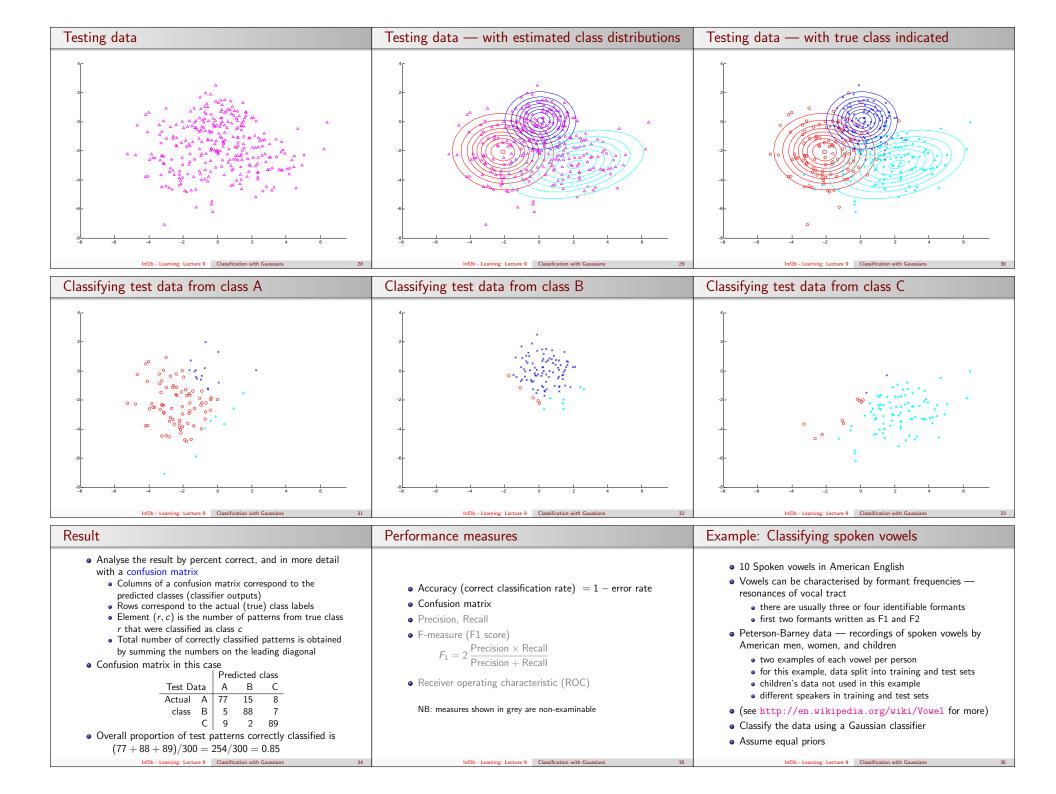
Inf2b - Learning: Lecture 9 Classification with Gaussian

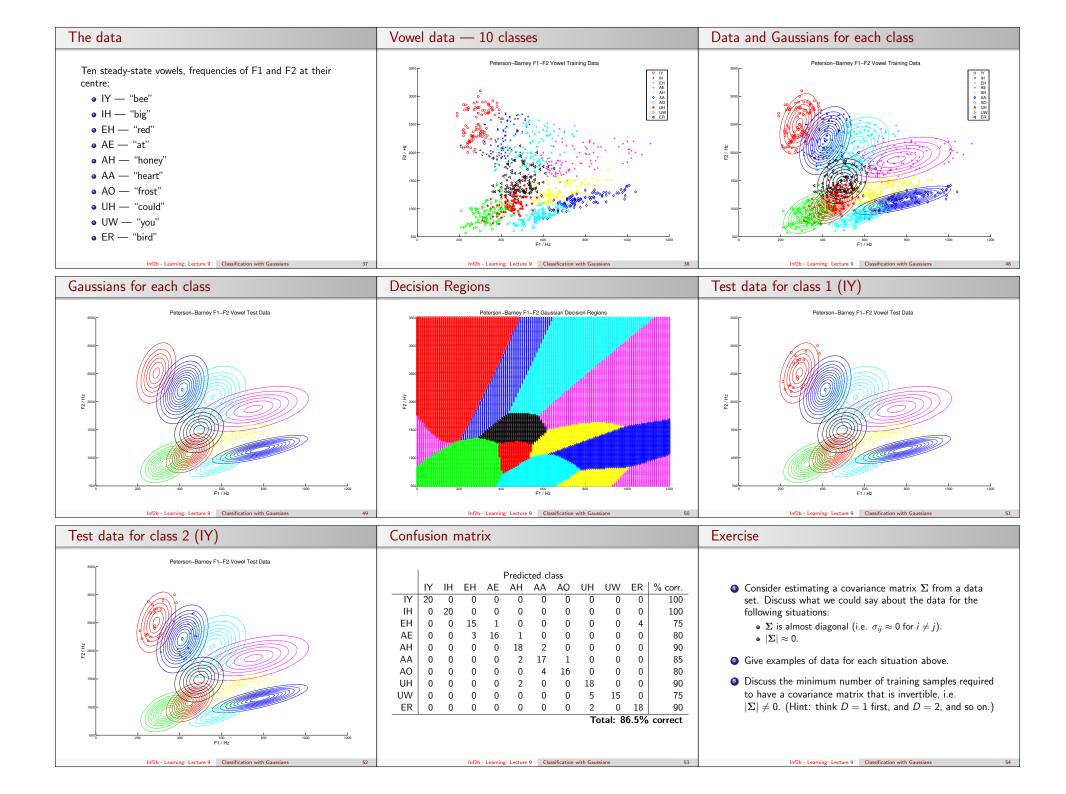
Training data



Gaussians estimated from training data







Summary

- Covariance matrix
- Using Bayes' theorem with pdfs
- Log probability ratio (log odds)
- The Gaussian classifier: 1-dimensional and multi-dimensional
- Classification examples
- Evaluation measures. Confusion matrix

Familiarise yourself with vector/matrix operations, using pens and papers! (as well as computers)

Inf2b - Learning: Lecture 9 Classification with Gaussians