Inf2b - Learning

Lecture 9: Classification with Gaussians

Today's Schedule

The multidimensional Gaussian distribution

Hiroshi Shimodaira
(Credit: lain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Inf2b - Learning: Lecture 9 Classification with Gaussians

Classification with Gaussians

@ The multidimensional Gaussian distribution (recap.)
© Practical topics on covariance matrix

© Bayes theorem and probability densities

@ 1-dimensional Gaussian classifier

© Multivariate Gaussian classifier

@ Evaluation of classifier performance
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@ The D-dimensional vector x = (xq,...,xp)7 is
multivariate Gaussian if it has a probability density
function of the following form:

Pl 1:2) = (o @ (- 07 - ).

The pdf is parameterised by the mean vector p and the
covariance matrix 3.

@ The 1-dimensional Gaussian is a special case of this pdf

o The argument to the exponential 2(x — p) 757 (x — p)
is referred to as a quadratic form, and it is always
non-negative.
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Covariance matrix

Maximum likelihood fit to a Gaussian

Tips on calculating covariance matrices

Covariance matrix (with ML estimation):

MATLAB is optimised for matrix/vector operations
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Properties of covariance matrix

Properties of covariance matrix

Geometry of covariance matrix

s=vDVT
Viiz -+ Vip A1 0 Vit - Vip
Vp1 -+ VDD 0 Ap Vpi1 '+ VDD

@ v; : eigen vector, \;: eigen value
3 Vi = )\,‘ Vi

0/\,’20, HV,H:].

D
o [N =][ A
D D
© > il 0i =2 A
Inf2b - Learning: Lecture 9 Classification with Gaussians

o rank(X)
o the number of linearly independent columns (or rows)
o the number of bases (i.e. the dimension of the column
space)
rank(E) =D — Vo /\,‘ >0
V,‘#j . 1 Vv

2| >0
rank(X2) < D — 3, : A =0

Jigy %) =1
[Z|=0
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X5

x

X

X
Sort eigen values: A\ >\ > ... > Ap

vy :  eigen vector of \;
v, eigen vector of A\,

yn=wvx, Var(y1) =X\
ya=vyx, Var(y) =X\
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Geometry of covariance matrix

Problems with the estimation of covariance matrix

Shared covariance matrix among classes

=wn/vM
)72:}’2/\/5

Y
Y, m
Y ? W ?1

(x=pw)'EMx—p) = (y-a)(y—a) = |ly—a

where i = <
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o |X| — 0 when
o N is not large enough (when compared with D)
NB: X[ =0for N <D
o There is high dependence (correlation) among variables
(eg p(xi, %) ~ 1)
@ X! becomes unstable when |X| is small.

@ Solutions?
e Share X among classes (=linear discriminant functions)
e Assume independence among variables = a diagonal
covariance matrix rather than a 'full’ covariance matrix.
o Reduce the dimensionality by transforming the data into
a low-dimensional vector space (e.g. PCA).
e Another regularisation:
@ Add a small positive number to the diagonal elements
Y+~ X+l
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@ How to estimate the shared covariance:
=% forallk=1,... K

1 N
3= NZ(X" —p)(xn — “)T
n=1
R R YN NV By
- KZ Z(Xn H‘)(Xn Il')
k=1 "k n=1
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Covariance matrix when naive Bayes is assumed

Bayes theorem and probability densities

Bayes theorem and univariate Gaussians

Y= ; oj=0fori#j
0 opD

plox| 1.3) = Gy oxp (—5x = 1027 x— )

4 X1\,u1, 1711) e P(XD|,UD70'DD)

D

Iz (5}

i
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@ Rules for probability densities are similar to those for
probabilities:

p(x,y) = p(xly) p(y)
px) = /P(X7y) dy
@ We may mix probabilities of discrete variables and
probability densities of continuous variables:
p(x, Z) = p(x|2) P(2)
@ Bayes' theorem for continuous data x and class C:
p(x|C) P(C)
p(x)
P(Clx) o< p(x|C) P(C)

P(Clx) =
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o If p(x|C) is Gaussian with mean z and variance o2
P(Clx) o p(x|C) P(C) = N(x; p.o*) P(C)

x \/2;7@@ (7(2;2“)3 P(C)

o The log likelihood LL(x|C) is:

LL(x| p,0%) = Inp(x| 1, 0%)
L 2 (=)
=3 <7 In(27) — Ino® — T)

@ The log posterior probability In P(C|x) is:
In P(C|x) o LL(x| C) + In P(C)

x % <f|n(27r) —Ino?— ()(;72“)2> +1InP(C)
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Log probability ratio (log odds)

Example: 1-dimensional Gaussian classifier

Gaussian pdfs for S and T vs histograms

For a classification problem of two classes: C; and G,

P(Gx)

" PGl

=InP(C|x) — In P(Gx)

1 ((X —m)® _ (x—p)?
2 o? o2
FInP(G) — InP(G)

2 2
+Inot — Inoz)

InP(Glx)—InP(GIx) >0 = G

InP(G|x) = InP(GIx) <0 = G
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@ Two classes, S and T, with some observations:
Class S |10 8 10 10 11 11
Class T |12 9 15 10 13 13
@ Assume that each class may be modelled by a Gaussian.
The estimated mean and variance of each pdf with the
maximum likelihood (ML) estimation are given as follows:
w(S) =1 o*S)=1
wWT)=12 o} (T)=4

@ The following unlabelled data points are available:

X1:].07 X2:].17 X3:6
To which class should each of the data points be
assigned?

Assume the two classes have equal prior probabilities.
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p(x]8S)

P (x)

0.1 p(x[T) 1

0 A/
0 5 10 15 20

X
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Posterior probabilities

Example: 1-dimensional Gaussian classifier (cont.)

Log odds

P(5)=0.5, P(T)=0.5

p(TIx)

p(x)
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o Take the log odds (posterior probability ratios):

DASX=R) L (opf (e
P(T|X = x) 2 o2 o2
+InP(S)—InP(T)

@ In the example the priors are equal, so:

WESX=)  L(CopF g
P(T|X =x) 2 o o2

= 7% ((x710)27%7|n4>

o If log odds are less than 0 assign to T, otherwise assign
to S.
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+1Ino% — Ina%—)

2 2
+Inos — InaT>

Test samples: x; =10, x, =11, x3 =6

ol 4

In P(SIX)/P(TIx)
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Example: unequal priors

Log odds

Multivariate Gaussian classifier

@ Now, assume P(S) = 0.3, P(T) = 0.7. Including this

Test samples: x; = 10, x; =11, x3 =6

Multivariate Gaussian (in D dimensions):

prior information, to which class should each of the above T p(x|p,X) = ﬁexp (—}(x _ u)TE’l(x _ IL))
test data points, x;, X2, X3, be assigned? = S (2m)P?| x| 2
o Again compute the log odds: / N .
& & 2 // \\ ] o Log likelihood:
P(SIX = x) 1((x—ps)® (x—pr) 2 2 "/ \ D 1 1 Ty-1
| E—— — | —1 = 4/ \ ] LL(x|p,X) = —=1In(27) — ZIn|X| — Z(x — X (x —
nP(T|X=><) 5 0_29 U%_ +Inos —Inot §4 // \\ (x| w, %) 5 (2m) 5 [ 2( ) ( )
+1InP(S) —InP(T) ¢ | ' N
= \) @ Posterior probability: p(C|x) o< p(x|p, Z)P(C)
1 x —12)? o A
=3 ((X —10)2 - (x—12)* 2 ;o In 4) +InP(S)—InP(T) B \ @ Log posterior probability:
\ 1 1
1 —12)2 1ot InP(C|x) x —=(x — ) "= (x — ) — = In|Z| + In P(C) + const.
=3 ((x—10)27¥fln4>+ln(3/7) \ (Clx) S(x—n) (x—p) =5 In[Z] (€)
5 :‘s ‘7 z‘i ‘9 1‘0 |‘w 1‘2 w‘a w‘4 15 o Try Q4 of Tutorial 4
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Example Training data Gaussians estimated from training data
a- a-
@ 2-dimensional data from three classes (A, B, C). * *
@ The classes have equal prior probabilities. 2 E— 7
e, X ook x
@ 200 points in each class ox %ef;x:w o
. . . oL g° o 8F, %*"& « oL “
@ Load into Matlab ( n x 2 matrices, each row is a data . O %0 x %;gi,; B
. . . o o XQ &% O %
point) and display using a scatter plot: 000’ fg,i*?%o x‘§mwx,
Lo I 558 05 oo
xa = load(’trainA.dat’); ? ° ;@%‘f,ogsg@ o B0 ; ?
xb = load(’trainB.dat’); P B° o Booy o Sev &
xc = load(’trainC.dat’); ot o , o3, e -t
hold on; 3 Lo o
scatter(xa(:, 1), xa(:,2), ’r’, ’0’); o © o ©
scatter (xb(:, 1), xb(:,2), ’b’, ’x’);
scatter(xc(:, 1), xc(:,2), ’c’, ’*’);
% = = = v 2 ; 3 £ = = = 0 7 i 3
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Testing data

Testing data — with estimated class distributions

Testing data — with true class indicated
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Classifying test data from class A

Classifying test data from class B

Classifying test data from class C
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o
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Result

Performance measures

Example: Classifying spoken vowels

@ Analyse the result by percent correct, and in more detail
with a confusion matrix
o Columns of a confusion matrix correspond to the
predicted classes (classifier outputs)
Rows correspond to the actual (true) class labels
Element (r, c) is the number of patterns from true class
r that were classified as class ¢
Total number of correctly classified patterns is obtained
by summing the numbers on the leading diagonal
@ Confusion matrix in this case
Predicted class
Test Data | A B C
Actual A |77 15 8
class B| 5 88 7
CcC| 9 2 89
@ Overall proportion of test patterns correctly classified is
(77 + 88 + 89)/300 = 254/300 = 0.85
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34

Accuracy (correct classification rate) =1 — error rate
Confusion matrix

Precision, Recall

F-measure (F1 score)

E Precision x Recall
1 — - - - A
Precision + Recall

@ Receiver operating characteristic (ROC)

NB: measures shown in grey are non-examinable
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10 Spoken vowels in American English
Vowels can be characterised by formant frequencies —
resonances of vocal tract

o there are usually three or four identifiable formants
o first two formants written as F1 and F2

Peterson-Barney data — recordings of spoken vowels by
American men, women, and children
o two examples of each vowel per person
o for this example, data split into training and test sets
o children’s data not used in this example
o different speakers in training and test sets

(see http://en.wikipedia.org/wiki/Vowel for more)

Classify the data using a Gaussian classifier

Assume equal priors
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The data

Vowel data — 10 classes

Data and Gaussians for each class

Ten steady-state vowels, frequencies of F1 and F2 at their
centre:

o IY — "bee”

o IH — “big"

o EH — “red”

o AE — “at”

o AH — "honey”
o AA — "heart”
o AO — “frost”
e UH — “could”
o UW — “you”

e ER — “bird”

Peterson-Barney F1-F2 Vowel Training Data

3500

1000

i
B >

L
0 20 a0

]
7000 7200

Peterson-Barney F1-F2 Vowel Training Data

L ]
500 7000 7200

500
F1/Hz
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Gaussians for each class Decision Regions Test data for class 1 (1Y)
o Peterson-Barney F1-F2 Vowel Test Data I—i;](]laili;sian Decision Regions . Peterson-Barney F1-F2 Vowel Test Data
o o o o o £ % -
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Test data for class 2 (1Y) Confusion matrix Exercise
oo Peterson-Barney F1-F2 Vowel Test Data
Predicted class
L Iy IH EH AE AH AA A0 UH UW ER | % corr. @ Consider estimating a covariance matrix 3 from a data
Iyj20 o o0 o0 0O 0 0 O 0 0 100 set. Discuss what we could say about the data for the
IH| 0 20 0 O 0 0 0 0 0 0 100 following situations:
= EH| 0 0 15 1 0 0 0 0 0o 4 75 o X is almost diagonal (i.e. o ~ 0 for i # j).
AE| 0O 0 3 16 1 0 0 0 0 0 80 o |3 ~0.
2l AH| 0 0 0 0 18 2 0 0 0 0 90
© AA| 0O O 0 0 2 17 1 0 0 0 85 @ Give examples of data for each situation above.
AO| 0 O 0 0 0 4 16 0 0 0 80
- UH| 0 0 o0 o0 2 0 0 18 0 0 90 @ Discuss the minimum number of training samples required
uw| 0 0 0 0 0 0 0 5 15 0 75 to have a covariance matrix that is invertible, i.e.
- ER/ 0 0 0 O O 0 0 2 0 18 90 |X| # 0. (Hint: think D = 1 first, and D = 2, and so on.)
Total: 86.5% correct
s . % e o
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Summary

Covariance matrix
Using Bayes' theorem with pdfs
Log probability ratio (log odds)

The Gaussian classifier: 1-dimensional and
multi-dimensional

Classification examples

@ Evaluation measures. Confusion matrix

Familiarise yourself with vector/matrix operations,
using pens and papers! (as well as computers)
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