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Today’s Schedule

1 Probability (review)

2 What is Bayes’ theorem for?

3 Bayes decision rule

4 More about probability

5 Optimisation problems
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Motivation for probability

In some applications we need to:

Communicate uncertainty

Use prior knowledge

Deal with missing data

(we cannot easily measure similarity)

Inf2b - Learning: Lecture 5
Introduction to statistical pattern recognition and

Optimisation 3



Warming up

Throwing two dices

Probability of {1, 1} ?

1

6× 6
=

1

36

Probability of {2, 5} ?

2

6× 6
=

1

18

Drawing two cards from a deck of cards

Probability of {Club,Spade}?

13× 13× 2

52× 51
=

13

102

Probability of {Club,Club}?

13× 12

52× 51
=

1

17
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Warming up (cont.)

Probability that a student in Informatics has eyeglasses?

Probability that you live more than 90 years?

When a real dice is thrown, is the probability of getting
{1} 1

6
?

Theoretical probability vs. Empirical probability
aka:

relative frequency
experimental probability

for a sample set drawn from
a population
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Rules of Probability

Random variables Events/values

X {x1, x2, . . . , xL}
Y {y1, y2, . . . , yM}

Product Rule:
P(Y =yj ,X =xi) = P(Y =yj |X =xi)P(X =xi)

= P(X =xi |Y =yj)P(Y =yj)

Abbreviation:
P(Y ,X ) = P(Y |X )P(X )

= P(X |Y )P(Y )

X and Y are independent iff:

P(X ,Y ) = P(X )P(Y )

P(X |Y ) = P(X ), P(Y |X ) = P(Y )
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Rules of Probability (cont.)

Sum Rule:

P(X =xi) =
M∑
j=1

P(X =xi ,Y =yj)

Abbreviation:

P(X ) =
∑
Y

P(X ,Y )

RHS: Mariginalisation of the joint probability over Y .
LHS: Marginal probability of X .

Application:

P(X ) =
∑
Y

P(X |Y )P(Y )
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Example: determining the sex of fish

Histograms of fish lengths (NF = NM = 100)
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(NB: different example from the one in Note 5.)
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Example: determining the sex of fish

Relative frequencies of fish length
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Example: determining the sex of fish

Possible decision boundary
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Fish questions

How to classify 4 cm, or 19 cm fish?

How to classify 10 cm fish?
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Fish questions

Relative frequency of male fish length: P(x |M)
Relative frequency of female fish length: P(x |F)

Given a fish length, x, is it sensible to decide as follows?

If P(x |M) > P(x |F) ⇒ male fish
If P(x |M) < P(x |F) ⇒ female fish
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Fish questions (cont.)

How to obtain P(Y | x)? (where Y = {F ,M})

The product rule:

P(Y , x) = P(Y | x)P(x)

= P(x |Y )P(Y )

Posterior probabilities:

P(Y | x) =
P(x |Y )P(Y )

P(x)
∝ P(x |Y )P(Y )

i.e.

P(M | x) =
P(x |M)P(M)

P(x)
∝ P(x |M)P(M)

P(F | x) =
P(x |F )P(F )

P(x)
∝ P(x |F )P(F )
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Bayes’ Theorem

P(H |E ) =
P(E |H)P(H)

P(E )

Thomas Bayes (?) (1702? – 1761)

http://www.york.ac.uk/depts/maths/histstat/bayespic.htm

c.f. Bayesian inference, Bayesian
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‘Bayesian’ philosophy refs

Non-examinable!

Bayes’ paper:
http://www.jstor.org/stable/105741

http://dx.doi.org/10.1093/biomet/45.3-4.296 (re-typeset)

Cox’s paper:
http://dx.doi.org/10.1119/1.1990764

http://dx.doi.org/10.1016/S0888-613X(03)00051-3 modern

commentary

MacKay textbook, amongst many others
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Bayes decision rule

Class C ={1, . . . ,K}; Ck to denote C =k ; input features X = x

Choose the most probable class: (maximum posterior class)

kmax = arg max
k ∈C

P(Ck |x) = arg max
k

P(x |Ck)P(Ck)

where
posterior︷ ︸︸ ︷

P(Ck | x) =

likelihood︷ ︸︸ ︷
P(x |Ck)

prior︷ ︸︸ ︷
P(Ck)

P(x)
=

P(x |Ck)P(Ck)∑K
j=1 P(x |Cj)P(Cj)⇒

It is known this decision rule gives minimum error rate.
(We will discuss this in Lecture 10)

Also called

Minimum error (misclassification) rate classification
(PRML C. M. Bishop (2006) Section 1.5)
Maximum posterior probability (MAP) decision rule
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Inferring labels for x =11

Equal prior probabilities:

P(M | x = 11) =
P(x = 11 |M)P(M)

P(x = 11)

=
P(x = 11 |M)P(M)

P(x = 11 |M)P(M) + P(x = 11 |F )P(F )

=
0.14 · 0.5

0.14 · 0.5 + 0.10 · 0.5
=

0.14

0.24
= 0.583̇

P(F | x = 11) =
P(x = 11 |F )P(F )

P(x = 11 |M)P(M) + P(x = 11 |F )P(F )

=
0.10 · 0.5

0.14 · 0.5 + 0.10 · 0.5
=

0.10

0.24
= 0.416̇

→ classify it as male

NB: For classification, no need to calculate P(x = 11).
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Inferring labels for x =11 (cont.)

Equal prior probabilities:

P(M | x = 11)

P(F | x = 11)
=

P(x = 11 |M)P(M)

P(x = 11 |F )P(F )
=

0.14 · 0.5
0.10 · 0.5

= 1.4

Classify it as male:

Twice as many females as males: (i.e., P(M) = 1/3, P(F ) = 2/3)

P(M | x = 11)

P(F | x = 11)
=

P(x = 11 |M)P(M)

P(x = 11 |F )P(F )
=

0.14 · 1/3

0.10 · 2/3
= 0.7

Classify it as female
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Likelihood vs posterior probability

P(Ck |x) =
P(x |Ck)P(Ck)

P(x)
=

P(x |Ck)P(Ck)∑K
j=1 P(x |Cj)P(Cj)

P(M) : P(F ) = 1 : 1

P(x |Ck)
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Likelihood vs posterior probability (cont.)

P(Ck |x) =
P(x |Ck)P(Ck)

P(x)
=

P(x |Ck)P(Ck)∑K
j=1 P(x |Cj)P(Cj)

P(M) : P(F ) = 1 : 4

P(x |Ck)
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Some more questions

Assume P(M) = P(F ) = 0.5
1 What is the value of P(M |X =4)?
2 What is the value of P(F |X =18)?
3 You observe data point x =22.

To which class should it be assigned?

Discuss how you could improve classification performance.

What if we increase the number of histogram bins?
What if we increase the number of samples?
What if we measure not only fish length but also weight?
(How can we estimate probabilities?)

It seems that we can estimate P(C |x) directly from data,
right?
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More about probability

Conditional probability of three variables

P(X ,Y |Z ) =
P(Y ,Z |X )P(X )

P(Z )

P(X |Y ,Z ) =
P(Z |Y ,X )P(X |Y )

P(Z |Y )

Chain rule
P(X1,X2, . . . ,XN) = P(X1)P(X2|X1)P(X3|X1,X2) · · ·

· · ·P(XN |X1, . . . ,XN−1)

Prove!
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Independence vs zero correlation

Independence vs Pearson correlation coefficient ρ = 0

If X and Y are independent, ρXY = 0.

The converse is not true.
See https://en.wikipedia.org/wiki/Correlation_and_dependence

E.g. (X ,Y ) = (−1, 0), (0,−1), (0, 1), (1, 0), each of which
occurs with a probability of 1

4 .

P(X =−1)P(Y =0) = 1/4 · 1/2 = 1/8
P(X =0)P(Y =−1) = 1/2 · 1/4 = 1/8
P(X =0)P(Y =1) = 1/2 · 1/4 = 1/8
P(X =1)P(Y =0) = 1/4 · 1/2 = 1/8

ρXY = 0, but P(X ,Y ) 6= P(X )P(Y )
i.e., not independent

Y

−1

−1

0
X

1

1
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Optimisation problems we’ve seen

Bayes decision rule (MAP decision rule)

kmax = arg max
k ∈C

P(Ck |x)

K -NN classification

c(z) = arg max
j ∈ {1,...,C}

∑
(x,c)∈Uk (z)

δj c

where Uk(z) is the set of k nearest training examples to z.

K -means clustering

min
{mk}K1

E

where E =
1

N

K∑
k=1

N∑
n=1

zkn‖xn −mk‖2

Dimensionality reduction to 2D with PCA
max
u,v

Var (y) + Var (z)

subject to ‖u‖=1, ‖v‖=1, u ⊥ v
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Optimisation problems : other examples

Find the shortest path between Edinburgh and London

Find the cheapest flights from Edinburgh to Tokyo

For UG4 projects, find the optimal allocation of
supervisors and students under given constraints (e.g. no
supervisors can take more than five students.)
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Types of optimisation problems

Continuous vs Discrete optimisation

Unconstrained vs Constrained optimisation

https://neos-guide.org/optimization-tree

https://en.wikipedia.org/wiki/Optimization_problem
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Continuous & unconstrained optimisation problems

Minimisation of objective function

min
x

f (x) where x ∈ RD , f : RD → R

Optimal solution, x∗ : f (x∗) ≤ f (x) for all x ∈ RD , satisfies †

∂f (x)

∂xi
= 0, for i = 1, . . . ,D

Vector rerpresentation:

∇f (x) =

(
∂f (x)

∂x1
, . . . ,

∂f (x)

∂xD

)T

= 0

where 0 = (0, . . . , 0)T

y

x
Global minimum

Local minimum

† This is not a sufficient condition, but a necessary condition.
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Optimisation of a quadratic function of one variable

Optimisation problem:

min
x

f (x)

f (x) = ax2 + bx + c , a > 0

Approach 1:

ax2 + bx + c = a

(
x +

b

2a

)2

− b2

4a
+ c

Approach 2:

df (x)

dx
= 2ax + b = 0

Solution: x = − b

2a
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Optimisation of a quadratic function of two variables

Optimisation problem:

min
{x ,y}

g(x , y)

g(x , y) = ax2 + by 2 + cxy + dx + ey + f

where a > 0, b > 0, c2 < 4ab

→ ∂g

∂x
= 2ax + cy + d = 0

∂g

∂y
= 2by + cx + e = 0(

2a c
c 2b

)(
x
y

)
=

(
−d
−e

)
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Least square error line fitting

Optimisation problem

min
a,b

1

N

N∑
n=1

(ŷn − yn)2

ŷn = axn + b

y

x→
∂E

∂a
=

2

N

N∑
n=1

(axn + b − yn)xn = 0

∂E

∂b
=

2

N

N∑
n=1

(axn + b − yn) = 0

⇒ See the lecture note for details.
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Least square error line fitting (cont.)

Exercise:

Optimisation problem

min
c,d

1

N

N∑
n=1

(x̂n − xn)2

x̂n = c yn + d

y

xFind the solution
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Iterative optimisation

Many optimisation problems do not have a closed-form
solution! (e.g. K-means clustering)

Iterative optimisation method

Step 1: Choose an initial point x0, and make t = 0.

Step 2: Choose xt+1 based on an update formula for xt .

Step 3: t ← t + 1 and go to step 2 unless stopping
criterion is met.

Example of iterative optimisation methods

Gradient descent

xt+1 = xt − η∇ f (x)|x=xt
where η > 0

Conjugate gradient method

Newton’s method
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Gradient descent

xt+1 = xt − η∇ f (x)|x=xt
where η > 0

t

f(x)

x
x

Things to consider:

· Choice of η (i.e. learning parameter)
· Local-minimum problem
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Summary

Bayes’ theorem for statistical pattern classification

Posterior is proportional to prior times likelihood

P(x) can be obtained with marginalisation of P(x |C )P(C )

Bayes decision rule achieves minimum error rate
classification

Discuss possible difficulties of applying the Bayes’
decision rule to real problems

Pattern recognition as optimisation problem

Most of optimisation problem does not have a
closed-form solution → Iterative optimisation method

Check the examples in slides, and try the exercises in
Note 5.
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Mid-course feedback

Your Learn course webpage
→ (on the left black tab) Have Your Say
→ Mid-course feedback
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