Inf2b - Learning
Lecture 5: Introduction to statistical pattern recognition and Optimisation

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
Today’s Schedule

1. Probability (review)
2. What is Bayes’ theorem for?
3. Bayes decision rule
4. More about probability
5. Optimisation problems
Motivation for probability

In some applications we need to:

- Communicate uncertainty
- Use prior knowledge
- Deal with missing data

(we cannot easily measure similarity)
Warming up

- Throwing two dice
 - Probability of \(\{1, 1\} \) ?
 - Probability of \(\{2, 5\} \) ?

- Drawing two cards from a deck of cards
 - Probability of \(\{\text{Club, Spade}\} \)?
 - Probability of \(\{\text{Club, Club}\} \)?
Probability that a student in Informatics has eyeglasses?

Probability that you live more than 90 years?

When a real dice is thrown, is the probability of getting \{1\} \frac{1}{6}?

Theoretical probability \textbf{vs.} Empirical probability

aka:
relative frequency
experimental probability
for a sample set drawn from a population
Rules of Probability

<table>
<thead>
<tr>
<th>Random variables</th>
<th>Events/values</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>${x_1, x_2, \ldots, x_L}$</td>
</tr>
<tr>
<td>Y</td>
<td>${y_1, y_2, \ldots, y_M}$</td>
</tr>
</tbody>
</table>

Product Rule:

$$P(Y = y_j, X = x_i) = P(Y = y_j \mid X = x_i) \cdot P(X = x_i)$$
$$= P(X = x_i \mid Y = y_j) \cdot P(Y = y_j)$$

Abbreviation:

$$P(Y, X) = P(Y \mid X) \cdot P(X)$$
$$= P(X \mid Y) \cdot P(Y)$$

X and Y are independent iff:

$$P(X, Y) = P(X) \cdot P(Y)$$

$$P(X \mid Y) = P(X), \quad P(Y \mid X) = P(Y)$$
Rules of Probability (cont.)

Sum Rule:

\[P(X = x_i) = \sum_{j=1}^{M} P(X = x_i, Y = y_j) \]

Abbreviation:

\[P(X) = \sum_{Y} P(X, Y) \]

RHS: *Marginalisation* of the joint probability over \(Y \).

LHS: *Marginal probability* of \(X \).

Application:

\[P(X) = \sum_{Y} P(X \mid Y) P(Y) \]
Example: determining the sex of fish

Histograms of fish lengths \((N_F = N_M = 100)\)

Lengths of male fish

Lengths of female fish

(NB: different example from the one in Note 5.)
Example: determining the sex of fish

Relative frequencies of fish length

Lengths of male fish

Lengths of female fish
Example: determining the sex of fish

Possible decision boundary

Lengths of male fish

Lengths of female fish

Introduction to statistical pattern recognition and Optimisation
Fish questions

- How to classify 4 cm, or 19 cm fish?
- How to classify 10 cm fish?
Fish questions

Relative frequency of male fish length: \(P(x \mid M) \)
Relative frequency of female fish length: \(P(x \mid F) \)

Given a fish length, \(x \), is it sensible to decide as follows?

If \(P(x \mid M) > P(x \mid F) \) \(\Rightarrow \) male fish
If \(P(x \mid M) < P(x \mid F) \) \(\Rightarrow \) female fish
Fish questions (*cont.*)

How to obtain $P(Y \mid x)$? (where $Y = \{F, M\}$)

- The product rule:
 \[P(Y, x) = P(Y \mid x) P(x) \]
 \[= P(x \mid Y) P(Y) \]

- Posterior probabilities:
 \[P(Y \mid x) = \frac{P(x \mid Y) P(Y)}{P(x)} \propto P(x \mid Y) P(Y) \]

i.e.

- $P(M \mid x) = \frac{P(x \mid M) P(M)}{P(x)} \propto P(x \mid M) P(M)$

- $P(F \mid x) = \frac{P(x \mid F) P(F)}{P(x)} \propto P(x \mid F) P(F)$
Bayes’ Theorem

\[P(H | E) = \frac{P(E | H) P(H)}{P(E)} \]

Thomas Bayes (?) (1702? – 1761)

http://www.york.ac.uk/depts/maths/histstat/bayespic.htm

c.f. Bayesian inference, Bayesian
LII. *An Essay towards solving a Problem in the Doctrine of Chances.* By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Dear Sir,

Now send you an essay which I have found among the papers of our deceased friend Mr. Bayes, and which, in my opinion, has great merit, and well deserves to be preserved. Experimental philosophy, you will find, is nearly interested in the subject of it; and on this account there seems to be particular reason for thinking that a communication of it to the Royal Society cannot be improper.

He had, you know, the honour of being a member of that illustrious Society, and was much esteemed by many in it as a very able mathematician. In an introduction which he has writ to this Essay, he says, that his design at first in thinking on the subject of it was, to find out a method by which we might judge concerning the probability that an event has to happen, in given circumstances, upon supposition that we know nothing concerning it but that, under the same circumstances, it has happened a certain number of times, and failed a certain other number of times.
‘Bayesian’ philosophy refs

Non-examinable!

Bayes’ paper:
http://www.jstor.org/stable/105741
http://dx.doi.org/10.1093/biomet/45.3-4.296 (re-typeset)

Cox’s paper:
http://dx.doi.org/10.1119/1.1990764
http://dx.doi.org/10.1016/S0888-613X(03)00051-3 modern commentary

MacKay textbook, amongst many others
Bayes decision rule

Class $C = \{1, \ldots, K\}$; C_k to denote $C = k$; input features $X = x$

Choose the most probable class: (maximum posterior class)

$$k_{\text{max}} = \arg \max_{k \in C} P(C_k | x) = \arg \max_{k} P(x | C_k) P(C_k)$$

where

$$P(C_k | x) = \frac{P(x | C_k) P(C_k)}{P(x)} = \frac{P(x | C_k) P(C_k)}{\sum_{j=1}^{K} P(x | C_j) P(C_j)}$$

⇒ It is known this decision rule gives minimum error rate. (We will discuss this in Lecture 10)

Also called

- Minimum error (misclassification) rate classification (PRML C. M. Bishop (2006) Section 1.5)
- Maximum posterior probability (MAP) decision rule
Inferring labels for $x = 11$

- **Equal prior probabilities:**

\[
P(M \mid x = 11) = \frac{P(x = 11 \mid M) P(M)}{P(x = 11)}
\]

\[
= \frac{0.14 \cdot 0.5}{0.14 \cdot 0.5 + 0.10 \cdot 0.5} = \frac{0.14}{0.24} = 0.583
\]

\[
P(F \mid x = 11) = \frac{P(x = 11 \mid F) P(F)}{P(x = 11 \mid M) P(M) + P(x = 11 \mid F) P(F)}
\]

\[
= \frac{0.10 \cdot 0.5}{0.14 \cdot 0.5 + 0.10 \cdot 0.5} = \frac{0.10}{0.24} = 0.416
\]

\rightarrow classify it as male

NB: For classification, no need to calculate $P(x = 11)$.
Equal prior probabilities:

\[
\frac{P(M \mid x = 11)}{P(F \mid x = 11)} = \frac{P(x = 11 \mid M) P(M)}{P(x = 11 \mid F) P(F)} = \frac{0.14 \cdot 0.5}{0.10 \cdot 0.5} = 1.4
\]

Classify it as male:

Twice as many females as males: \((i.e., P(M) = 1/3, P(F) = 2/3) \)

\[
\frac{P(M \mid x = 11)}{P(F \mid x = 11)} = \frac{P(x = 11 \mid M) P(M)}{P(x = 11 \mid F) P(F)} = \frac{0.14 \cdot 1/3}{0.10 \cdot 2/3} = 0.7
\]

Classify it as female
Likelihood vs posterior probability

\[
P(C_k | x) = \frac{P(x | C_k) P(C_k)}{P(x)} = \frac{P(x | C_k) P(C_k)}{\sum_{j=1}^{K} P(x | C_j) P(C_j)}
\]

\[
P(M) : P(F) = 1 : 1
\]
Likelihood vs posterior probability (cont.)

\[
P(C_k|x) = \frac{P(x|C_k)P(C_k)}{P(x)} = \frac{P(x|C_k)P(C_k)}{\sum_{j=1}^{K} P(x|C_j)P(C_j)}
\]

\[
P(M) : P(F) = 1 : 4
\]
Some more questions

- Assume $P(M) = P(F) = 0.5$
 1. What is the value of $P(M \mid X = 4)$?
 2. What is the value of $P(F \mid X = 18)$?
 3. You observe data point $x = 22$.
 To which class should it be assigned?

- Discuss how you could improve classification performance.
 - What if we increase the number of histogram bins?
 - What if we increase the number of samples?
 - What if we measure not only fish length but also weight?
 (How can we estimate probabilities?)

- It seems that we can estimate $P(C \mid x)$ directly from data, right?
More about probability

- Conditional probability of three variables

\[
P(X, Y | Z) = \frac{P(Y, Z | X) P(X)}{P(Z)}
\]

\[
P(X | Y, Z) = \frac{P(Z | Y, X) P(X | Y)}{P(Z | Y)}
\]

- Chain rule

\[
P(X_1, X_2, \ldots, X_N) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2) \cdots \cdots P(X_N | X_1, \ldots, X_{N-1})
\]

Prove!
Independence vs zero correlation

- Independence vs Pearson correlation coefficient $\rho = 0$
 If X and Y are independent, $\rho_{XY} = 0$.
 The converse is not true.
 See https://en.wikipedia.org/wiki/Correlation_and_dependence

E.g. $(X, Y) = (-1, 0), (0, -1), (0, 1), (1, 0)$, each of which occurs with a probability of $\frac{1}{4}$.

\[
\begin{align*}
P(X = -1) P(Y = 0) &= 1/4 \cdot 1/2 = 1/8 \\
P(X = 0) P(Y = -1) &= 1/2 \cdot 1/4 = 1/8 \\
P(X = 0) P(Y = 1) &= 1/2 \cdot 1/4 = 1/8 \\
P(X = 1) P(Y = 0) &= 1/4 \cdot 1/2 = 1/8
\end{align*}
\]

$\rho_{XY} = 0$, but $P(X, Y) \neq P(X) P(Y)$
 i.e., not independent
Optimisation problems we’ve seen

- Bayes decision rule (MAP decision rule)
 \[k_{\text{max}} = \arg \max_{k \in C} P(C_k | x) \]

- \(K\)-NN classification
 \[c(z) = \arg \max_{j \in \{1, \ldots, C\}} \sum_{(x, c) \in U_k(z)} \delta_{jc} \]
 where \(U_k(z)\) is the set of \(k\) nearest training examples to \(z\).

- \(K\)-means clustering
 \[\min_{\{m_k\}_1^K} E \]
 where \(E = \frac{1}{N} \sum_{k=1}^{K} \sum_{n=1}^{N} z_{kn} \|x_n - m_k\|^2 \)

- Dimensionality reduction to 2D with PCA
 \[\max_{u,v} \text{Var} (y) + \text{Var} (z) \]
 subject to \(\|u\| = 1, \|v\| = 1, u \perp v\)
Optimisation problems: other examples

- Find the shortest path between Edinburgh and London
- Find the cheapest flights from Edinburgh to Tokyo
- For UG4 projects, find the optimal allocation of supervisors and students under given constraints (e.g. no supervisors can take more than five students.)
Types of optimisation problems

- Continuous vs Discrete optimisation
- Unconstrained vs Constrained optimisation

https://neos-guide.org/optimization-tree
Continuous & unconstrained optimisation problems

Minimisation of *objective function*

\[
\min_x f(x) \quad \text{where } x \in \mathcal{R}^D, \; f : \mathcal{R}^D \to \mathcal{R}
\]

Optimal solution, \(x^* : f(x^*) \leq f(x)\) for all \(x \in \mathcal{R}^D\), satisfies \(\dagger\)

\[
\frac{\partial f(x)}{\partial x_i} = 0, \text{ for } i = 1, \ldots, D
\]

Vector representation:

\[
\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \ldots, \frac{\partial f(x)}{\partial x_D}\right)^T = 0
\]

where \(0 = (0, \ldots, 0)^T\)

\(\dagger\) This is not a sufficient condition, but a necessary condition.
Optimisation of a quadratic function of one variable

Optimisation problem:

\[\min_x f(x) \]

\[f(x) = ax^2 + bx + c, \quad a > 0 \]

- Approach 1:

\[ax^2 + bx + c = a \left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a} + c \]

- Approach 2:

\[\frac{df(x)}{dx} = 2ax + b = 0 \]

- Solution: \(x = -\frac{b}{2a} \)
Optimisation of a quadratic function of two variables

Optimisation problem:

$$\min_{\{x,y\}} g(x, y)$$

$$g(x, y) = ax^2 + by^2 + cxy + dx + ey + f$$

where $$a > 0, b > 0, c^2 < 4ab$$

$$\frac{\partial g}{\partial x} = 2ax + cy + d = 0$$

$$\frac{\partial g}{\partial y} = 2by + cx + e = 0$$

$$\begin{pmatrix} 2a & c \\ c & 2b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -d \\ -e \end{pmatrix}$$
Least square error line fitting

- Optimisation problem

\[
\min_{a,b} \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2
\]

\[
\hat{y}_n = ax_n + b
\]

\[
\frac{\partial E}{\partial a} = \frac{2}{N} \sum_{n=1}^{N} (ax_n + b - y_n)x_n = 0
\]

\[
\frac{\partial E}{\partial b} = \frac{2}{N} \sum_{n=1}^{N} (ax_n + b - y_n) = 0
\]

⇒ See the lecture note for details.
Exercise:

- Optimisation problem

\[
\min_{c,d} \frac{1}{N} \sum_{n=1}^{N} (\hat{x}_n - x_n)^2
\]

\[
\hat{x}_n = c y_n + d
\]

Find the solution
Iterative optimisation

Many optimisation problems do not have a closed-form solution! (e.g. K-means clustering)

Iterative optimisation method

- Step 1: Choose an initial point x_0, and make $t = 0$.
- Step 2: Choose x_{t+1} based on an update formula for x_t.
- Step 3: $t \leftarrow t + 1$ and go to step 2 unless stopping criterion is met.

Example of iterative optimisation methods

- **Gradient descent**
 \[x_{t+1} = x_t - \eta \nabla f(x)|_{x=x_t} \quad \text{where } \eta > 0 \]

- Conjugate gradient method
- Newton’s method
Gradient descent

\[x_{t+1} = x_t - \eta \nabla f(x) \bigg|_{x=x_t} \]

where \(\eta > 0 \)

Things to consider:

- Choice of \(\eta \) (i.e. learning parameter)
- Local-minimum problem
Bayes’ theorem for statistical pattern classification
Posterior is proportional to prior times likelihood

\[P(x) \text{ can be obtained with marginalisation of } P(x|C)P(C) \]

Bayes decision rule achieves minimum error rate classification

Discuss possible difficulties of applying the Bayes’ decision rule to real problems

Pattern recognition as optimisation problem

Most of optimisation problem does not have a closed-form solution \(\rightarrow \) Iterative optimisation method

Check the examples in slides, and try the exercises in Note 5.
Your Learn course webpage
→ (on the left black tab) Have Your Say
→ Mid-course feedback