Today's topics

1. Classification
2. Nearest neighbour classification
3. Decision boundary
4. Tips on pre-processing data
5. Generalisation and over-fitting

Types of learning problems

<table>
<thead>
<tr>
<th>Data</th>
<th>System</th>
<th>Type of problem</th>
<th>Type of learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>(x)</td>
<td>groups (subsets)</td>
<td>clustering</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>discrete category</td>
<td>classification</td>
</tr>
<tr>
<td>x</td>
<td>y</td>
<td>continuous value</td>
<td>regression</td>
</tr>
</tbody>
</table>

where $x = (x_1, \ldots, x_D)^T$: feature vector
y: target vector or scalar

Supervised learning

Test mode

Classification

New data: Label

Goal of training: develop a classifier of good generalisation

Classifying test data with K-nearest neighbours

1-nearest neighbour
K-NN classification algorithm

For each test example \(z \in Z \):
\[\text{Compute the distance } r(z,x) \text{ between } z \text{ and each training example } (x,c) \in X \]
\[\text{Select } U_k(z) \subseteq X, \text{ the set of the } k \text{ nearest training examples to } z \]
\[\text{Decide the class of } z \text{ by the majority voting:} \]
\[c(z) = \arg \max_{j \in \{1,...,C\}} \sum_{(x,c) \in U_k(z)} \delta_j c \]

Decision boundary: boundary (surface) that partitions the vector space into subsets of different classes.

Decision regions: regions separated by the decision boundaries.
Classification and nearest neighbours

Decision boundaries for $C = 3$

![Decision boundaries for $C = 3$](image)

What K should we use?

![An example where a large K reduces noise](image)

$K = 1$

$K = 15$

(Black curve: KNN decision boundary, darkened purple curve: the Bayes decision boundary)

LANDSAT Application

Predict land-usage from satellite data

KNN applied to 9 pixel patch in 4 spectral bands, with $K = 5$

Tips on pre-processing data

![Tips on pre-processing data](image)

- Different units
 - Standardise features unless understand units

- Consider transformation, e.g. log-transform.

Generalisation and over-fitting

How reasonable is this decision boundary?

Poor generalisation: stories

In a competition:

Classic stories:

http://neil.fraser.name/writing/tank/

http://www.j-paige.org/dobbs/neural_net_urban_legends.html

How reliable is the error rate?

- Error rate on training data set:
 - can be $\sim 0\%$
 - useless to estimate generalisation error

- Error rate on a test data set (exclusive to the training set)
 - How large should the data set be?
 - How should it be collected?

 Cross validation is used to estimate generalisation error (swapping test and training data sets)

 - k-fold cross validation (k-fold CV)
 - 2-fold CV is sometimes called ‘holdout method’
 - leave-one-out cross validation (LOO CV)
Summary

- **Classification with similarity based methods**
 - Represent items as feature vectors
 - Compute distances to other items and sort
 - Assign a class label to the feature vector
 - \(k\)-NN: an example-based approach that classifies a test point based on the classes of the closest training samples
 - Larger \(k\) results in a smoother solution
 - Decision boundaries/regions, Voronoi diagram

- **Generalisation**
 - Overfitting: tuning a classifier to closely to the training set can reduce accuracy on the test set
 - Compare methods on held out data (validation set)
 - Estimate final performance on really new data (test set)

Lab 4

Friday 09 Feb. Lab-4 K-NN classification

- Fridays at 14:10-15:00 in AT-5.05

Tutorial Week 04

Simple recommender system and clustering

- Work on the questions in advance to identify what you understand and what you don’t. (avoid attending the tutorial without any preparation)
- Be active/positive - prepare topics that you’d like to discuss at the tutorial
- Try writing Matlab code of your own