Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2018/infr08009learning
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2018
Today’s topics

1. Classification
2. Nearest neighbour classification
3. Decision boundary
4. Tips on pre-processing data
5. Generalisation and over-fitting
Types of learning problems

<table>
<thead>
<tr>
<th>Data</th>
<th>System</th>
<th>Type of problem</th>
<th>Type of learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>({x})</td>
<td>groups (subsets)</td>
<td>clustering</td>
</tr>
<tr>
<td>((x, y))</td>
<td>(x)</td>
<td>(y): discrete category</td>
<td>classification</td>
</tr>
<tr>
<td>((x, y))</td>
<td>(x)</td>
<td>(y): continuous value</td>
<td>regression</td>
</tr>
</tbody>
</table>

where \(x = (x_1, \ldots, x_D)^T \) : feature vector

\(y \) : target vector or scalar
Supervised learning

Test mode

Classification

Goal of training: develop a classifier of good generalisation
Supervised learning

Oranges:

Lemons:

height/cm
width/cm

Classification and nearest neighbours
The data has a feature vector \(\mathbf{x} = (x_1, x_2, \ldots, x_D)^T \) and a label \(c \in \{1, \ldots, C\} \).

Training set: A set of \(N \) feature vectors and their labels \((\mathbf{x}_1, c_1), \ldots, (\mathbf{x}_N, c_N)\).

Use a learning algorithm to train a classifier from a training set.

Test set: A set of feature vectors to which the classifier must assign labels – used for evaluation. (NB: training and test sets should be mutually exclusive.)

Error function: how accurate is the classifier? One option is to count the number of misclassifications:

\[
\text{Error rate} = \frac{\# \text{ of misclassified samples}}{\# \text{ of test samples}}
\]
Nearest-neighbour classifier

- **Nearest neighbour classification**: label a test example to have the label of the closest training example
- **K-nearest neighbour (K-NN) classification**: find the \(K \) closest points in the training set to the test example; classify using a majority vote of the \(K \) class labels
- Training a \(K \)-nearest neighbour classifier is simple! — Just store the training set
- Classifying a test example requires finding the \(K \) closest training examples
 - This is computationally demanding if the training set is large — potentially need to compute the Euclidean distance between the test example and every training example
 - Data structures such as the kD-tree can make finding nearest neighbours much more efficient (in the average case)
Classifying test data with K-nearest neighbours

8
1-nearest neighbour
3-nearest neighbour

Height/cm

Circumference/cm

Inf2b Learning and Data: Lecture 4
Classification and nearest neighbours
5-nearest neighbour

Height/cm vs. Circumference/cm plot with data points and a circle indicating the 5-nearest neighbours of a particular point.
K-NN classification algorithm

For each test example $z \in Z$:

- Compute the distance $r(z, x)$ between z and each training example $(x, c) \in X$
- Select $U_k(z) \subseteq X$, the set of the k nearest training examples to z
- Decide the class of z by the majority voting:

$$c(z) = \arg \max_{j \in \{1,...,C\}} \sum_{(x,c) \in U_k(z)} \delta_{j,c}$$
Geometry of nearest neighbour
Geometry of nearest neighbour – decision boundary and decision regions
Geometry of nearest neighbour

Delaunay triangulation

Perpendicular bisectors of the edges of triangles
Voronoi tessellation

Voronoi diagram
Decision boundary: boundary (surface) that partitions the vector space into subsets of different classes.

\[K-\text{NN classification forms \textit{piecewise-linear decision boundary}.} \]
Decision regions: regions separated by the decision boundaries
Decision boundaries for $C = 3$
What K should we use?

An example where a large K reduces noise

$K = 1$

(Black curve: KNN decision boundary, broken purple curve: the Bayes decision boundary)

$K = 15$

The Elements of Statistical Learning (2nd Ed.)
Hastie, Tibshirani, Friedman. §13.3 p463–

Learning curves

The Elements of Statistical Learning (2nd Ed.)
Hastie, Tibshirani, Friedman. §13.3 p463–
Predict land-usage from satellite data
KNN applied to 9 pixel patch in 4 spectral bands, with $K = 5$
Tips on pre-processing data

\[
\begin{align*}
\text{height [m]} & \quad \text{width [cm]} \\
\text{different units} & \\
\Rightarrow \text{Standardise features unless understand units}
\end{align*}
\]
Tips on pre-processing data

Wisconsin Diagnostic Breast Cancer (WDBC) data set

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

⇒ Consider transformation, e.g. log-transform.
Generalisation and over-fitting

How reasonable is this decision boundary?
Poor generalisation: stories

In a competition:

Classic stories:

http://neil.fraser.name/writing/tank/

How reliable is the error rate?

- Error rate on training data set:
 - can be \(\sim 0\% \)
 - \(\Rightarrow \) useless to estimate generalisation error

- Error rate on a test data set (exclusive to the training set)
 - How large should the data set be?
 - How should it be collected?

 Cross validation is used to estimate generalisation error
 (swapping test and training data sets)

 - \(k \)-fold cross validation (\(k \)-fold CV)
 (2-fold CV is sometimes called ‘holdout method’)
 - leave-one-out cross validation (LOO CV)
Cross validation

Population

Sampling

4-fold CV

Data set
Training data set
Validation data set
Test data set

P1 P2 P3 P4
Summary

- **Classification with similarity based methods**
 - Represent items as feature vectors
 - Compute distances to other items and sort
 - Assign a class label to the feature vector
 - \(k\)-NN: an example-based approach that classifies a test point based on the classes of the closet training samples
 - Larger \(k\) results in a smoother solution
 - Decision boundaries/regions, Voronoi diagram

- **Generalisation**
 - Overfitting: tuning a classifier to closely to the training set can reduce accuracy on the test set
 - Compare methods on held out data (validation set)
 - Estimate final performance on really new data (test set)
Friday 09 Feb. Lab-4 K-NN classification

- Fridays at 14:10-15:00 in AT-5.05
Simple recommender system and clustering

- Work on the questions in advance to identify what you understand and what you don’t. (avoid attending the tutorial without any preparation)
- Be active/positive - prepare topics that you’d like to discuss at the tutorial
- Try writing Matlab code of your own