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Today’s Schedule

1 What is clustering

2 K -means clustering

3 Hierarchical clustering

4 Example – unmanned ground vehicle navigation

5 Dimensionality reduction with PCA and data visualisation

6 Summary
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Clustering

Clustering: partition a data set into meaningful or useful
groups, based on distances between data points

Clustering is an unsupervised process — the data items
do not have class labels

Why cluster?

Interpreting data Analyse and describe a situation by
automatically dividing a data set into
groupings

Compressing data Represent data vectors by their cluster
index — vector quantisation
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Clustering

“Human brains are good at finding regularities in data.
One way of expressing regularity is to put a set of objects
into groups that are similar to each other. For exam-
ple, biologists have found that most objects in the nat-
ural world fall into one of two categories: things that
are brown and run away, and things that are green and
don’t run away. The first group they call animals, and
the second, plants.”

Recommended reading: David MacKay textbook, p284–

http://www.inference.phy.cam.ac.uk/mackay/itila/
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Visualisation of film review users

MovieLens data set
(http://grouplens.org/datasets/movielens/)
C ≈ 1000 users, M ≈ 1700 movies
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2D plot of users based on rating similarity
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Application of clustering

Face clustering
doi: 10.1109/CVPR.2013.450
LHI-Animal-Face dataset

Image segmentation
http://dx.doi.org/10.1093/bioinformatics/btr246

Document clustering
Thesaurus generation

Temporal Clustering of Human Behaviour
http://www.f-zhou.com/tc.html
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A two-dimensional space

http://homepages.inf.ed.ac.uk/imurray2/teaching/oranges_and_lemons/
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The Unsupervised data
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Manderins
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Navel oranges
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Spanish jumbo oranges
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Belsan lemons
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Some other lemons
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“Selected seconds” oranges
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K -means clustering

A simple algorithm to find clusters:

1 Pick K random points as cluster centre positions

2 Assign each point to its nearest centre∗

3 Move each centre to mean of its assigned points

4 If centres moved, goto 2.

∗ In the unlikely event of a tie, break tie in some way.
For example, assign to the centre with smallest index in

memory.
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K -means clustering
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Evaluation of clustering

One way to measure the quality of a k-means clustering
solution is by a sum-squared error function, i.e. the sum
of squared distances of each point from its cluster centre.

Let zkn = 1 if the point xn belongs to cluster k and
zkn = 0 otherwise. Then:

E =
K∑

k=1

N∑

n=1

zkn‖xn −mk‖2
xn = (xn1, . . . , xnD)T

mk = (mk1, . . . ,mkD)T

‖·‖ : Euclidean (L2) norm

where mk is the centre of cluster k .

Sum-squared error is related to the variance — thus
performing k-means clustering to minimise E is
sometimes called minimum variance clustering.

This is a within-cluster error function — it does not
include a between clusters term
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Theory of K -means clustering

If assignments don’t change, algorithm terminates.

Can assignments cycle, never terminating?

Convergence proof technique: find a Lyapunov
function L, that is bounded below and cannot increase.
L = sum of square distances between points and centres

NB: E (t+1) ≤ E (t)

K -means is an optimisation algorithm for L.
Local optima are found, i.e. there is no guarantee of
finding global optimum. Running multiple times and
using the solution with best L is common.
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How to decide K?

The sum-squared error decreases as K increases
( E → 0 as K → N)

We need another measure?!
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Failures of K -means (e.g. 1)
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Failures of K -means (e.g. 2)
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Clustering clustering methods (NE)

K -means clustering is not the only method for clustering
data

See:
http://en.wikipedia.org/wiki/Cluster_analysis
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Hierarchical clustering (NE)

Form a ‘dendrogram’ / binary tree with data at leaves

Bottom-up / Agglomerative:

Repeatedly merge closest groups of points

Often works well. Expensive: O(N3)

Top-down / Divisive:

Recursively split groups into two (e.g. with k-means)

Early choices might be bad.

Much cheaper! ∼ O(N2) or O(N2 logN)

More detail:
Pattern Classification (2nd ed.), Duda, Hart, Stork. §10.9
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Bottom-up clustering of the lemon/orange data

0 0.5 1 1.5 2 2.5 3 3.5 4
Orange 12
Orange 22
Orange 18
Orange 11
Orange 21
Orange 14
Orange 19
Orange 24
Orange 10
Orange 13
Orange 16
Orange 15
Orange 23
Orange 17
Orange 20
Lemon 31
Lemon 35
Lemon 36
Lemon 32
Lemon 40
Lemon 34
Lemon 38
Lemon 39
Lemon 33
Lemon 37
Orange 6
Orange 7
Orange 8
Orange 9

Lemon 27
Lemon 29
Lemon 25
Lemon 28
Lemon 30
Lemon 26
Orange 1
Orange 2
Orange 3
Orange 4
Orange 5

inter cluster distance

Hierarchical clustering (centroid−distance)
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Stanley

Stanford Racing Team; DARPA 2005 challenge

http://robots.stanford.edu/talks/stanley/
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Inside Stanley

Stanley figures from Thrun et al., J. Field Robotics 23(9):661, 2006.
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Perception and intelligence

It would look pretty stupid to run off the road,
just because the trip planner said so.
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How to stay on the road?

Classifying road seems hard. Colours and textures change:
road appearance in one place may match ditches elsewhere.
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Clustering to stay on the road

Stanley used a Gaussian mixture model. “Souped up k-means.”

The cluster just in front is road (unless we already failed).
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Dimensionality reduction and data visualisation

High-dimensional data are difficult to understand and
visualise.
Consider dimensionality reduction of data for visualisation
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Orthogonal projection of data onto an axis

cos
T

||x||y=
u x1||u||= =

θθ
u

x
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Optimal projection of 2D data onto 1D

X 2

X 1

Y

X 2

X 1

Y
Mapping 2D to 1D: yn = uTxn = u1xn1 + u2xn2

Optimal mapping: max
u

Var (y)

Var (y) = 1
N−1

∑N
n=1 (yn − ȳ)2

cf. least squares fitting (linear regression)
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Principal Component Analysis (PCA)

Mapping D-dimensional data to a principal component
axis u = (u1, . . . , uD)T that maximises Var (y):

yn = uTxn = u1xn1 + · · ·+ uDxnD NB: ‖u‖ = 1

u is given as the eigenvector with the largest eigenvalue
of the covariance matrix, S :

S =
1

N−1

N∑

n=1

(xn−x̄)(xn−x̄)T , x̄ =
1

N

N∑

n=1

xn

Eigen values λi and eigenvectors pi of S :

S pi = λi pi , i = 1, . . . ,D

If λ1 ≥ λ2 ≥ . . . ≥ λD , then u = p1, and Var (y) = λ1

NB: pT
i pj = 0, i.e. pi ⊥ pj for i 6= j

pi is normally normalised so that ‖pi‖ = 1.
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Covariance matrix

S =




s11 . . . s1D

...
. . .

...
sD1 . . . sDD


 · · · D-by-D symmetric matrix

In scalar representation:

sij =
1

N−1

N∑

n=1

(xni − x̄i)(xnj − x̄j), x̄i =
1

N

N∑

n=1

xni

Relation with Pearson’s correlation coefficient:

rij =
1

N−1

N∑

n=1

(
xni − x̄i

si

)(
xnj − x̄j

sj

)

=
1

si sj

1

N−1

N∑

n=1

(xni − x̄i)(xnj − x̄j)

=
sij√
siisjj

cf: si =
√
sii =

√√√√ 1

N−1

N∑

n=1

(xni − x̄i )2
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Principal Component Analysis (PCA) (cont.)

Let v = p2, i.e. the eigenvector for the second largest
eiven values, λ2

Map xn on to the axis by v :

zn = vTxn = v1xn1 + · · ·+ vDxnD

Point (yn, zn)T in R2 is the projection of xn ∈ RD on the
2D plane spanned by u and v.

Var (y) = λ1, Var (z) = λ2

Can be generalised to a mapping from RD to R` using
{p1, . . . ,p`}, where ` < D.

NB: Dimensionality reduction may involve loss of
information. Some informaation will be lost if∑`

i=1λi∑D
i=1λi

< 1
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PCA on the film review toy data
Body of Burn Rev

Australia Lies After Hancock Milk Road
Denby 3 7 4 9 9 7

McCarthy 7 5 5 3 8 8
M’stern 7 5 5 0 8 4

Puig 5 6 8 5 9 8
Travers 5 8 8 8 10 9

Turan 7 7 8 4 7 8

S =




2.66 −1.07 0.53 −4.67 −1.20 −0.67
−1.07 1.47 1.07 3.27 0.60 1.27

0.53 1.07 3.47 0.67 0.20 1.87
−4.67 3.27 0.67 10.97 2.30 3.67
−1.20 0.60 0.20 2.30 1.10 0.60
−0.67 1.27 1.87 3.67 0.60 3.07




P =




−0.341 0.345 0.326 −0.180 0.603 −0.512
0.255 0.151 −0.240 −0.548 0.496 0.554
0.101 0.786 −0.503 0.028 −0.280 −0.198
0.827 −0.154 0.096 −0.182 0.025 −0.450
0.181 −0.065 −0.341 0.733 0.556 0.015
0.304 0.461 0.676 0.309 −0.047 0.375




Q =




15.8 0 0 0 0 0
0 4.85 0 0 0 0
0 0 1.13 0 0 0
0 0 0 0.634 0 0
0 0 0 0 0.288 0
0 0 0 0 0 0




where P = (p1, . . . ,p6) and (Q)ii = λi for i = 1, . . . , 6
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PCA on the film review toy data (cont.)
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Dimensionality reduction D → ` by PCA




y1

y2
...
y`


 =




pT
1 x

pT
2 x
...

pT
` x


 =




pT
1

pT
2
...

pT
`


 x

where {pi}`i=1 are the eigenvectors for the ` largest eigenvalues
of S . The above can be rewritten as

y = ATx · · · linear transformation from RD to R`

y = (y1, . . . , y`)
T : `-dimensional vector

A = (p1, . . . ,p`) : D × ` matrix

In many applications, we normalise data before PCA, e.g. y = AT (x− x̄).
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Summary

Clustering
K -means for minimising ‘cluster variance’
Review notes, not just slides
[other methods exist: hierarchical, top-down and bottom-up]

Unsupervised learning
Spot structure in unlabelled data
Combine with knowledge of task

Principal Component Analysis (PCA)
Find principal component axes for dimensionality
reduction and visualisation

Try implementing the algorithms! (Lab 3 in Week 4)
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Further reading (NE)

Rui Xu, D. Wunsch, “Survey of clustering algorithsm,” in IEEE
Transactions on Neural Networks, vol. 16, no. 3, pp. 645-678, May
2005.
https://doi.org/10.1109/TNN.2005.845141

Dongkuan Xu, Yingjie Tian, “A Comprehensive Survey of
Clustering Algorithms,” Annals of Data Science, 2015, Volume 2,
Number 2, Page 165.
https://doi.org/10.1007/s40745-015-0040-1

C. Bishop, “Pattern Recognition and Machine Learning,” Chapter
12.1 (PCA).
https://www.microsoft.com/en-us/research/people/

cmbishop/prml-book/

C.O.S. Sorzano, J. Vargas, A. Pascual Montano, “A survey of
dimensionality reduction techniques,” 2014.
https://arxiv.org/abs/1403.2877
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Quizes

Q1: Find computational complexity of k-means algorithm

Q2: For k-means clustering, discuss possible methods for
mitigating the local minimum problem.

Q3: Discuss possible problems with k-means clustering and
solutions when the variances of data (i.e. si , i =1, . . . ,D)
are much different from each other.

Q4: For k-means clustering, show E (t+1) ≤ E (t). (NE)

Q5: At page 37, show y = uTx.

Q6: At page 39, show Var (y) = λ1, where λ1 is the largest
eigenvalue of S . (NE)

Q7: The first principal component axis is sometimes confused
with the line of least squares fitting (or regression line).
Explain the difference.
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