Inf2b - Learning

Lecture 2: Similarity and Reocommendation systems

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Recommender systems

Today's Recommendations For You

Here's a daily sample of items recommended for you. Click here to see all recommendations.

The Shangri-la Diet (Paperback) by Seth Roberts Derivativ... (Paperback) by M. ***** (3) £5.81 Fix this recommendation

C++ Design Patterns and S. Joshi ##### (7) £22.78 Fix this recommendation

What the Dog Saw: and other... (Paperback) by Malcolm Gladwell ******* (17) £5.00 Fix this recommendation

Garden State [DVD] [2004] DVD ~ Zach Braff 4444 (98) f3 99 Fix this recommendation

R in a Nutshell (In a Nutshell (... (Paperback) by Joseph Adler £20.40 Fix this recommendation

Protector C Large 5 Litre All Insects... ALL ITEMS SENT IN DISCREET PACKAGING ***** (8) £49.99 £29.99 Fix this recommendation

What makes recommendations good?

- Data and distances between entities
- ② Similarity and recommendations
- In Normalisation, Pearson Correlation
- Transposed problem

The Films in 2008

The Critics

David Denby Todd McCarthy Joe Morgenstern

Claudia Puig

Peter Travers

Kenneth Turan

Film review scores by critics - data

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8

Representation of data & notation:

$$X = \begin{pmatrix} 3 & 7 & 4 & 9 & 9 & 7 \\ 7 & 5 & 5 & 3 & 8 & 8 \\ 7 & 5 & 5 & 0 & 8 & 4 \\ 5 & 6 & 8 & 5 & 9 & 8 \\ 5 & 8 & 8 & 8 & 10 & 9 \\ 7 & 7 & 8 & 4 & 7 & 8 \end{pmatrix}$$

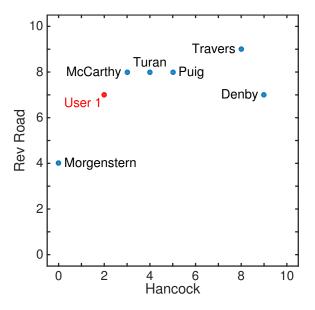
Score of movie *m* by critic *c*: x_{cm} , $\operatorname{sc}_{c}(m)$ Score vector by critic *c*: $\mathbf{x}_{c} = (x_{c1}, \dots, x_{cM})^{T}$ aka feature vector

Problem definition

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8
User1	-	-	-	2	-	7
User2	-	6	9	-	-	6

Predict user's score \hat{x}_{um} for unseen film *m* based on the film review scores by the critics. \Rightarrow Film recommendation (Fill the missing elements based on others)

A two-dimensional review space



Euclidean distance

Distance between 2D vectors: $\boldsymbol{u} = (u_1, u_2)^T$ and $\boldsymbol{v} = (v_1, v_2)^T$

$$r_2(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$$

Distance between *D*-dimensional vectors: $\boldsymbol{u} = (u_1, \dots, u_D)^T$ and $\boldsymbol{v} = (v_1, \dots, v_D)^T$

$$r_2(\boldsymbol{u},\boldsymbol{v}) = \sqrt{\sum_{k=1}^{D} (u_k - v_k)^2}$$

Measures similarities between feature vectors i.e., similarities between digits, critics, movies, genes, ... NB: $r_2()$ denotes "2-norm", c.f. *p*-norm or L^p -norm. [Note 2] cf. other distance measures, e.g. Hamming distance, city-block distance (L^1 norm).

Distances between critics

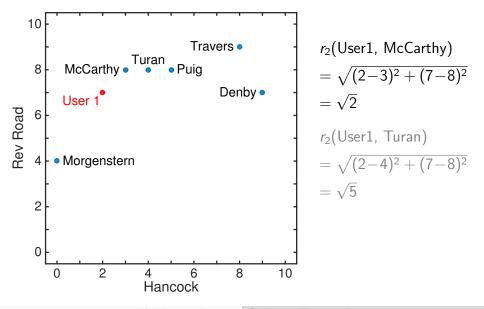
$$r_2(\mathbf{x}_i, \mathbf{x}_j) = \sqrt{\sum_{m=1}^{M} (x_{im} - x_{jm})^2}$$

	Denby	McCarthy	M'stern	Puig	Travers	Turan
Denby		7.7	10.6	6.2	5.2	7.9
McCarthy	7.7		5.0	4.4	7.2	3.9
M'stern	10.6	5.0		7.5	10.7	6.8
Puig	6.2	4.4	7.5		3.9	3.2
Travers	5.2	7.2	10.7	3.9		5.6
Turan	7.9	3.9	6.8	3.2	5.6	

NB: Distances measured in a 6-dimensional space (M = 6)

The closest pair is Puig and Turan

2D distance between User1 and critics



Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Simple strategy 1 for film recommendation

- Find the closest critic, *c**, to User *u*,
- use x_{c^*m} for \hat{x}_{um} .

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8
User1	-	-	-	2	-	7
User2	-	6	9	-	-	6

Film recommendation for User2

McCarthy Tu	• Puig • User2	Travers Der	nby				
	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road	<i>r</i> ₂ (critic, User2)
Denby	3	7	4	9	9	7	$\sqrt{27} \approx 5.2$
McCarthy	7	5	5	3	8	8	$\sqrt{21}pprox$ 4.6
M'stern	7	5	5	0	8	4	$\sqrt{21}pprox$ 4.6
Puig	5	6	8	5	9	8	$\sqrt{5} pprox 2.2$
Travers	5	8	8	8	10	9	$\sqrt{14} pprox 3.7$
Turan	7	7	8	4	7	8	$\sqrt{6} \approx 2.4$
User2	-	6	9	-	-	6	

Strategy 2

Consider not only the closest critic but also all the critics. Option 1: The mean or average of critic scores for film *m*:

$$\hat{x}_{um} = \frac{1}{C} \sum_{c=1}^{C} x_{cm}$$

Option 2: Weighted average over critics:

Weight critic scores according to the *similarity* between the critic and user.

$$\hat{x}_{um} = \frac{1}{\sum_{c=1}^{C} \sin(\mathbf{x}_u, \mathbf{x}_c)} \sum_{c=1}^{C} (\sin(\mathbf{x}_u, \mathbf{x}_c) \cdot \mathbf{x}_{cm})$$

cf. Weighted arithmetic mean (weighted average) in maths:

$$\bar{x} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n} = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}$$

NB: if every x_i has the same value, so does \bar{x} .

Similarity measures

There's a choice. For example:

$$\sin(\boldsymbol{u},\boldsymbol{v}) = \frac{1}{1+r_2(\boldsymbol{u},\boldsymbol{v})}$$

Can now predict scores for User 2 (see notes)

Good measure?

- Consider distances 0, ∞ , and in between.
- What if some critics rate more highly than others?
- What if some critics have a wider spread than others?
- What if not all critics have seen the same movies? (missing data problem)

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road	mean	std.
Denby	3	7	4	9	9	7	6.5	2.5
McCarthy	7	5	5	3	8	8	6.0	2.0
M'stern	7	5	5	0	8	4	4.8	2.8
Puig	5	6	8	5	9	8	6.8	1.7
Travers	5	8	8	8	10	9	8.0	1.7
Turan	7	7	8	4	7	8	6.8	1.5

Normalisation

Sample mean and sample standard deviation of critic c's scores:

$$ar{x}_{c} = rac{1}{M} \sum_{m=1}^{M} x_{cm}$$
 $s_{c} = \sqrt{rac{1}{M-1} \sum_{m=1}^{M} (x_{cm} - ar{x}_{c})^{2}}$

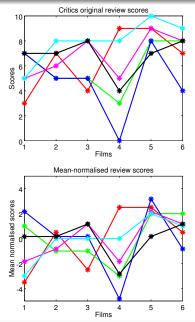
Different means and spreads make reviewers look different.

 \Rightarrow Create 'standardised score' with mean zero and st. dev. 1. Standard score:

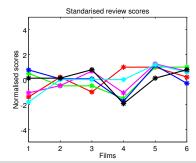
$$z_{cm} = \frac{x_{cm} - \bar{x}_c}{s_c}$$

Many learning systems work better with standardised features / outputs

Normalisation of critics review scores



	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Denby	3	7	4	9	9	7
McCarthy	7	5	5	3	8	8
M'stern	7	5	5	0	8	4
Puig	5	6	8	5	9	8
Travers	5	8	8	8	10	9
Turan	7	7	8	4	7	8



Inf2b - Learning: Lecture 2 Similarity and Reocommendation systems

Pearson correlation coefficient

Estimate of 'correlation' between critics c and d:

$$r_{cd} = \frac{1}{M-1} \sum_{m=1}^{M} z_{cm} z_{dm}$$
$$= \frac{1}{M-1} \sum_{m=1}^{M} \left(\frac{x_{cm} - \bar{x}_c}{s_c} \right) \left(\frac{x_{dm} - \bar{x}_d}{s_d} \right)$$

Based on standard scores

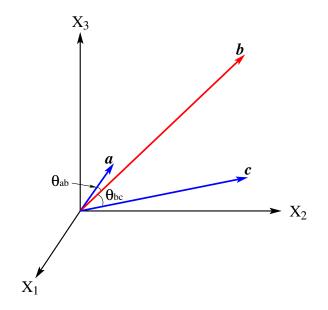
(a shift and stretch of a reviewer's scale makes no difference – shift/scale invariant)

- $-1 \leq r_{cd} \leq 1$
- How *r_{cd}* can be used as a similarity measure?

Used in the mix by the winning netflix teams:

https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pd

Pearson correlation coefficient (cont.)



- 2 Similarity and recommendations
- 3 Normalisation, Pearson Correlation
- Transposed problem

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.

Transposed problem

Customers Who Bought This Item Also Bought

Mobius Dick by Andrew Crumey

The Girl with the Dragon Tattoo by Stieg Larsson

Netherland by Joseph O'Neill

Page 1 of 16

The Secret Scripture by Sebastian Barry

Child 44 by Tom Rob Smith

Once Upon a Time in the North by Philip Pullman

Another strategy — based on distance between Movies

	Australia	Body of Lies	Burn After	Hancock	Milk	Rev Road
Australia		5.8	5.3	10.9	8.9	7.2
Body of Lies	5.8		3.7	6.6	5.9	4.0
Burn After	5.3	3.7		8.9	7.0	4.5
Hancock	10.9	6.6	8.9		10.9	8.4
Milk	8.9	5.9	7.0	10.9		4.8
Rev. Road	7.2	4.0	4.5	8.4	4.8	

Run the same code for distance between critics, simply transpose the data matrix first

Transpose of data in numpy is data.T, in Matlab/Octave it's data'

The Netflix million dollar prize

- C = 480, 189 users/critics
- M = 17,770 movies
- $C \times M$ matrix of ratings $\in \{1, 2, 3, 4, 5\}$

(ordinal values)

Full matrix \sim 10 billion cells \sim 1% cells filled (100,480,507 ratings available)

References (NE)

- https://www.netflixprize.com
- https://doi.org/10.1109/MSPEC.2009.4907383
- https://doi.org/10.1109/MC.2009.263

Further reading (NE)

- J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Recommender systems survey, Knowledge-Based Systems, Volume 46, 2013, pp.109-132. https://doi.org/10.1016/j.knosys.2013.03.012
- Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, Guangquan Zhang, Recommender system application developments: A survey, Decision Support Systems, Volume 74, 2015, pp.12-32. https://doi.org/10.1016/j.dss.2015.03.008
- Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay Deep Learning based Recommender System: A Survey and New Perspectives,

ACM Computing Surveys (CSUR), February 2019, Article No.: 5.

https://doi.org/10.1145/3285029

- Q1: Give examples for $r_{cd} \approx -1, 0, \text{ and } 1.$
- Q2: Show the Pearson correlation coefficient can be rewritten as

$$r_{cd} = \frac{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c) (x_{dm} - \bar{x}_d)}{\sqrt{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c)^2} \sqrt{\sum_{m=1}^{M} (x_{dm} - \bar{x}_d)^2}}$$

Q3: How the missing data of critics scores should be treated?Q4: What if a user provides scores for a few films only?

- Rating prediction: fill in entries of a $C \times M$ matrix
- A row is a feature vector of a critic
- Guess cells based on weighted average of similar rows
- Similarity based on distance and Pearson correlation coef.
- Could transpose matrix and run same code!
- NB: we considered a very simple case only.
- Try the exercises in Note 2, and do programming in Lab 2.

• Lab1 on 21th at 11:10-13:00, 22nd Jan. at 13:10-15:00 in AT-6.06.

"Similarity and recommender systems"

- Lab worksheet available from the course web page.
- Questions outside the lab hours: http://piazza.com/ed.ac.uk/spring2019/infr08009inf2blearning

Matlab/Octave version

```
c_scores = [
   3749 97;
   7553 88;
   7550 84;
   5685 98:
   5 8 8 8 10 9;
   7 7 8 4 7 8]; % CxM
u2\_scores = [6 \ 9 \ 6];
u2_movies = [2 3 6]; % one-based indices
% The next line is complicated. See also next slide:
d2 = sum(bsxfun(@minus, c_scores(:,u2_movies), u2_scores).^2, 2)';
r2 = sqrt(d2);
sim = 1./(1 + r2); % 1xC
pred_scores = (sim * c_scores) / sum(sim) % 1xM = 1xC * CxM
```

Matlab/Octave square distances

Other ways to get square distances:

% The next line is like the Python, but not valid Matlab. % Works in recent builds of Octave. d2 = sum((c_scores(:,u2_movies) - u2_scores).^2, 2)';

% Sq. distance is common; I have a general routine at: % homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_dist.m d2 = square_dist(u2_scores', c_scores(:,u2_movies)');

Or you could write a for loop and do it as you might in Java. Worth doing to check your code.

NumPy programming example

```
from numpy import *
```

```
c_scores = array([
    [3, 7, 4, 9, 9, 7],
    [7, 5, 5, 3, 8, 8],
    [7, 5, 5, 0, 8, 4],
    [5, 6, 8, 5, 9, 8],
    [5, 8, 8, 8, 10, 9],
    [7, 7, 8, 4, 7, 8]]) # C,M
u2\_scores = array([6, 9, 6])
u2_movies = array([1, 2, 5]) # zero-based indices
r2 = sqrt(sum((c_scores[:,u2_movies] - u2_scores)**2, 1).T) # C,
sim = 1/(1 + r2) \# C,
pred_scores = dot(sim, c_scores) / sum(sim)
print(pred_scores)
```

The predicted scores has predictions for all movies, # including ones where we know the true rating from u2.