Recommender systems

What makes recommendations good?

Here’s a daily sample of items recommended for you. Click here to see all recommendations.

The Shangri-la Diet (Paperback) by Seth Roberts
Fix this recommendation

C++ Design Patterns and Derivatives... (Paperback) by M. S. Joshi
Fix this recommendation

What the Dog Saw: and other... (Paperback) by Malcolm Gladwell
Fix this recommendation

Garden State [DVD] [2004] DVD ~ Zach Braff
Fix this recommendation

R in a Nutshell (In a Nutshell series) (Paperback) by Joseph Adler
Fix this recommendation

Protector C Large 5 Litre All Insects...
ALL ITEMS SENT IN DISCREET PACKAGING
Fix this recommendation
Today’s schedule

1. Data and distances between entities
2. Similarity and recommendations
3. Normalisation, Pearson Correlation
4. Transposed problem
The Films in 2008

- Australia
- Inglourious Basterds
- Body of Lies
- Milk
- Hancock
- Revolutionary Road
The Critics

David Denby Todd McCarthy Joe Morgenstern

Claudia Puig Peter Travers Kenneth Turan

Similarity and Recommendation systems
Film review scores by critics – data

<table>
<thead>
<tr>
<th>Critics</th>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>M’stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Representation of data & notation:

\[
X = \begin{pmatrix}
3 & 7 & 4 & 9 & 9 & 7 \\
7 & 5 & 5 & 3 & 8 & 8 \\
7 & 5 & 5 & 0 & 8 & 4 \\
5 & 6 & 8 & 5 & 9 & 8 \\
5 & 8 & 8 & 8 & 10 & 9 \\
7 & 7 & 8 & 4 & 7 & 8
\end{pmatrix}
\]

- Score of movie \(m\) by critic \(c\): \(x_{cm}, \quad sc_c(m)\)
- Score vector by critic \(c\): \(x_c = (x_{c1}, \ldots, x_{cM})^T\)
- aka feature vector
Problem definition

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>M'stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>User1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>User2</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Predict user’s score \hat{x}_{um} for unseen film m based on the film review scores by the critics. ⇒ Film recommendation
(Fill the missing elements based on others)
A two-dimensional review space

User 1

Hancock

Rev Road

Denby

McCarthy

Puig

Morgenstern

Travers

Turan
Euclidean distance

Distance between $2D$ vectors: $u = (u_1, u_2)^T$ and $v = (v_1, v_2)^T$

$$r_2(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$$

Distance between D-dimensional vectors: $u = (u_1, \ldots, u_D)^T$
and $v = (v_1, \ldots, v_D)^T$

$$r_2(u, v) = \sqrt{\sum_{k=1}^{D} (u_k - v_k)^2}$$

Measures similarities between feature vectors
i.e., similarities between digits, critics, movies, genes, \ldots

NB: $r_2(\)$ denotes “2-norm”, c.f. p-norm or L^p-norm. [Note 2]
cf. other distance measures, e.g. Hamming distance, city-block distance (L^1 norm).
Distances between critics

\[r_2(x_i, x_j) = \sqrt{\sum_{m=1}^{M} (x_{im} - x_{jm})^2} \]

<table>
<thead>
<tr>
<th></th>
<th>Denby</th>
<th>McCarthy</th>
<th>M’stern</th>
<th>Puig</th>
<th>Travers</th>
<th>Turan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>7.7</td>
<td>10.6</td>
<td>6.2</td>
<td>5.2</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>McCarthy</td>
<td>7.7</td>
<td>5.0</td>
<td>4.4</td>
<td>7.2</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>M’stern</td>
<td>10.6</td>
<td>5.0</td>
<td>7.5</td>
<td>10.7</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td>Puig</td>
<td>6.2</td>
<td>4.4</td>
<td>7.5</td>
<td>3.9</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Travers</td>
<td>5.2</td>
<td>7.2</td>
<td>10.7</td>
<td>3.9</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Turan</td>
<td>7.9</td>
<td>3.9</td>
<td>6.8</td>
<td>3.2</td>
<td>5.6</td>
<td></td>
</tr>
</tbody>
</table>

NB: Distances measured in a 6-dimensional space \((M = 6)\)

The closest pair is Puig and Turan
2D distance between User1 and critics

\[r_2(\text{User1, McCarthy}) = \sqrt{(2-3)^2 + (7-8)^2} = \sqrt{2} \]

\[r_2(\text{User1, Turan}) = \sqrt{(2-4)^2 + (7-8)^2} = \sqrt{5} \]
Simple strategy 1 for film recommendation

- Find the closest critic, c^*, to User u,
- use x_{c^*m} for \hat{x}_{um}.

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>M’stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>User1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>User2</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>
Film recommendation for User2

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev Road</th>
<th>$r_2(\text{critic, User2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>$\sqrt{27} \approx 5.2$</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>$\sqrt{21} \approx 4.6$</td>
</tr>
<tr>
<td>M’stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td>$\sqrt{21} \approx 4.6$</td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>$\sqrt{5} \approx 2.2$</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>$\sqrt{14} \approx 3.7$</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>$\sqrt{6} \approx 2.4$</td>
</tr>
<tr>
<td>User2</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-6</td>
<td></td>
</tr>
</tbody>
</table>
Consider not only the closest critic but also all the critics.

Option 1: The mean or average of critic scores for film m:

$$\hat{x}_{um} = \frac{1}{C} \sum_{c=1}^{C} x_{cm}$$

Option 2: Weighted average over critics:

Weight critic scores according to the *similarity* between the critic and user.

$$\hat{x}_{um} = \frac{1}{\sum_{c=1}^{C} \text{sim}(x_u, x_c)} \sum_{c=1}^{C} (\text{sim}(x_u, x_c) \cdot x_{cm})$$

cf. Weighted arithmetic mean (weighted average) in maths:

$$\bar{x} = \frac{w_1 x_1 + w_2 x_2 + \cdots + w_n x_n}{w_1 + w_2 + \cdots w_n} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

NB: if every x_i has the same value, so does \bar{x}.
There’s a choice. For example:

$$\text{sim}(u, v) = \frac{1}{1 + r_2(u, v)}$$

Can now predict scores for User 2 (see notes)

Good measure?

- Consider distances 0, ∞, and in between.
- What if some critics rate more highly than others?
- What if some critics have a wider spread than others?
- What if not all critics have seen the same movies? (missing data problem)
Critic review score statistics

<table>
<thead>
<tr>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After Hancock</th>
<th>Milk Road</th>
<th>mean</th>
<th>std.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>M’stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>
Normalisation

Sample mean and sample standard deviation of critic c’s scores:

$$\bar{x}_c = \frac{1}{M} \sum_{m=1}^{M} x_{cm}$$

$$s_c = \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} (x_{cm} - \bar{x}_c)^2}$$

Different means and spreads make reviewers look different.

\Rightarrow Create ‘standardised score’ with mean zero and st. dev. 1.

Standard score:

$$z_{cm} = \frac{x_{cm} - \bar{x}_c}{s_c}$$

Many learning systems work better with standardised features / outputs
Normalisation of critics review scores

Critics original review scores

Mean-normalised review scores

Standarised review scores

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev</th>
<th>Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denby</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>McCarthy</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>M'stern</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Puig</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Travers</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Turan</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Pearson correlation coefficient

Estimate of ‘correlation’ between critics c and d:

$$r_{cd} = \frac{1}{M - 1} \sum_{m=1}^{M} z_{cm} z_{dm}$$

$$= \frac{1}{M - 1} \sum_{m=1}^{M} \left(\frac{x_{cm} - \bar{x}_c}{s_c} \right) \left(\frac{x_{dm} - \bar{x}_d}{s_d} \right).$$

- Based on standard scores
 (a shift and stretch of a reviewer’s scale makes no difference – shift/scale invariant)
- $-1 \leq r_{cd} \leq 1$
- How r_{cd} can be used as a similarity measure?

Used in the mix by the winning Netflix teams:

Distances between entities

Similarity and recommendations

Normalisation, Pearson Correlation

Transposed problem

And a trick: transpose your data matrix and run your code again. The result is sometimes interesting.
Transposed problem
Another strategy — based on distance between Movies

<table>
<thead>
<tr>
<th></th>
<th>Body of Lies</th>
<th>Burn After</th>
<th>Hancock</th>
<th>Milk</th>
<th>Rev Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>5.8</td>
<td>5.3</td>
<td>10.9</td>
<td>8.9</td>
<td>7.2</td>
</tr>
<tr>
<td>Body of Lies</td>
<td>5.8</td>
<td>3.7</td>
<td>6.6</td>
<td>5.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Burn After</td>
<td>5.3</td>
<td>3.7</td>
<td>8.9</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>Hancock</td>
<td>10.9</td>
<td>6.6</td>
<td>8.9</td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td>Milk</td>
<td>8.9</td>
<td>5.9</td>
<td>7.0</td>
<td>10.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Rev. Road</td>
<td>7.2</td>
<td>4.0</td>
<td>4.5</td>
<td>8.4</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Run the same code for distance between critics, simply transpose the data matrix first

Transpose of data in numpy is data.T, in Matlab/Octave it’s data’
The Netflix million dollar prize

\[C = 480,189 \ \text{users/critics} \]
\[M = 17,770 \ \text{movies} \]
\[C \times M \ \text{matrix of ratings} \in \{1, 2, 3, 4, 5\} \]

Full matrix ~ 10 billion cells
$\sim 1\%$ cells filled (100,480,507 ratings available)
Q1: Give examples for \(r_{cd} \approx -1, 0, \) and 1.

Q2: Show the Pearson correlation coefficient can be rewritten as

\[
r_{cd} = \frac{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c)(x_{dm} - \bar{x}_d)}{\sqrt{\sum_{m=1}^{M} (x_{cm} - \bar{x}_c)^2} \sqrt{\sum_{m=1}^{M} (x_{dm} - \bar{x}_d)^2}}
\]

Q3: How the missing data of critics scores should be treated?

Q4: What if a user provides scores for a few films only?
Rating prediction: fill in entries of a $C \times M$ matrix

A row is a feature vector of a critic

Guess cells based on weighted average of similar rows

Similarity based on distance and Pearson correlation coef.

Could transpose matrix and run same code!

NB: we considered a very simple case only.

Try the exercises in Note 2, and do programming in Lab 2.
Drop-in labs for Learning

- Friday, 26th January, 14:10-15:00, in AT-5.05 (West Lab)
- “Similarity and recommender systems”
- Lab worksheet available from the course web page.
- Questions outside the lab hours:
 http://piazza.com/ed.ac.uk/spring2018/infr08009learning
Matlab/Octave version

c_scores = [
 3 7 4 9 9 7;
 7 5 5 3 8 8;
 7 5 5 0 8 4;
 5 6 8 5 9 8;
 5 8 8 8 10 9;
 7 7 8 4 7 8]; % CxM
u2_scores = [6 9 6];
u2_movies = [2 3 6]; % one-based indices

% The next line is complicated. See also next slide:
d2 = sum(bsxfun(@minus, c_scores(:,u2_movies), u2_scores).^2, 2)';
r2 = sqrt(d2);
sim = 1./(1 + r2); % 1xC
pred_scores = (sim * c_scores) / sum(sim) % 1xM = 1xC * CxM
Other ways to get square distances:

% The next line is like the Python, but not valid Matlab.
% Works in recent builds of Octave.
d2 = sum((c_scores(:,u2_movies) - u2_scores).^2, 2)’;

% Old-school Matlab way to make sizes match:
d2 = sum((c_scores(:,u2_movies) - ...
 repmat(u2_scores, size(c_scores,1), 1)).^2, 2)’;

% Sq. distance is common; I have a general routine at:
% homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_dist.m

d2 = square_dist(u2_scores’, c_scores(:,u2_movies)’);

Or you could write a for loop and do it as you might in Java.
Worth doing to check your code.
from numpy import *

c_scores = array(
 [
 [3, 7, 4, 9, 9, 7],
 [7, 5, 5, 3, 8, 8],
 [7, 5, 5, 0, 8, 4],
 [5, 6, 8, 5, 9, 8],
 [5, 8, 8, 8, 10, 9],
 [7, 7, 8, 4, 7, 8]]) # C,M
u2_scores = array([6, 9, 6])
u2_movies = array([1, 2, 5]) # zero-based indices

r2 = sqrt(sum((c_scores[:,u2_movies] - u2_scores)**2, 1).T) # C,
sim = 1/(1 + r2) # C,
pred_scores = dot(sim, c_scores) / sum(sim)
print(pred_scores)

The predicted scores has predictions for all movies,
including ones where we know the true rating from u2.