Welcome to Inf2b - Learning!

Today’s Schedule:

1. Course structure
2. What is (machine) learning? (and why should you care?)
3. Administrative stuff
 - How to do well
4. Setting up a learning problem

(time allowing)

Course structure

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

- 15+1 lectures (including review) - Tuesdays, Fridays
- Tutorials (starting in week 4)
- Drop-in labs for Learning (Tue 11:10-13:00, Wed 13:10-15:00)
- 1 assessed assignment (with drop-in labs)
 CW1: 06/Mar. – 03/Apr.

Intro summary

Fit numbers in a program to data (i.e. train machines on data)
More robust than hand-fitted rules
Can’t approach humans at some tasks (e.g., vision)
Machines make better predictions in many other cases

Applications of machine learning

Within informatics:
- Visual as we’ve seen. (eg1, eg2)
- Graphics: increasingly data driven
- AI & Natural Language Processing (NLP): text search/summarisation, speech recognition/synthesis, e.g. IBM Watson
- Robotics: vision, planning, control, …
- Compilers: learning how to optimise and beyond: data analysis across the sciences

Every day:
- Adverts / recommendations all over the web … Big Data
- Discounts in Tescos http://www.macrobert.co.uk/discovery/big-data-what.html
- Speech recognition and synthesis (e.g. Siri, Echo), Machine Translation, … with self-driving cars

Face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?

(F. Viola, C. Murri and Y. LeCun, 1998)

Viola–Jones Face detection (2001)

- Face detector consists of linear combination of ‘weak’ classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Taken from: https://ahprojects.com/cvdazzle/
A nice demo: http://vimeo.com/12774528

Drop-in labs for Learning

- Tuesdays 11:10-13:00, Wednesdays 13:10-15:00 in AT-6.06
- Starting in Week 2. Both sessions are the same.
- Worksheets available from the course webpage
- Purposes of lab sessions
 - Assistance in understanding basic algorithms and techniques of machine learning and data analysis
 - Assistance in programming with Matlab
 - Assistance in working on the assignment (CW1)
- Practice on machine learning using Matlab
- Work on toy problems for the topics taught in the course
- Demonstrator: Teodora Georgescu (Tuesdays), Riccardo Fiorista (Wednesdays)

Hiding from the machines (cameras)

The Viola-Jones face detector is fast, but has some drawbacks.

 PACS: 10:44 - 10:50

[Credit: Iain Murray and Steve Renals]

Office hours: Wednesdays at 14:00-15:00 in IF-3.04
Jan-Mar 2020

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh
http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/inf208028
Office hours: Wednesdays at 14:00-15:00 in IF-3-04
Jan-Mar 2020

Welcome to Inf2b - Learning!

Today’s Schedule:

1. Course structure
2. What is (machine) learning? (and why should you care?)
3. Administrative stuff
 - How to do well
4. Setting up a learning problem

(time allowing)

Course structure

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

- 15+1 lectures (including review) - Tuesdays, Fridays
- Tutorials (starting in week 4)
- Drop-in labs for Learning (Tue 11:10-13:00, Wed 13:10-15:00)
- 1 assessed assignment (with drop-in labs)
 CW1: 06/Mar. – 03/Apr.

Intro summary

Fit numbers in a program to data (i.e. train machines on data)
More robust than hand-fitted rules
Can’t approach humans at some tasks (e.g., vision)
Machines make better predictions in many other cases

Applications of machine learning

Within informatics:
- Visual as we’ve seen. (eg1, eg2)
- Graphics: increasingly data driven
- AI & Natural Language Processing (NLP): text search/summarisation, speech recognition/synthesis, e.g. IBM Watson
- Robotics: vision, planning, control, …
- Compilers: learning how to optimise and beyond: data analysis across the sciences

Every day:
- Adverts / recommendations all over the web … Big Data
- Discounts in Tescos http://www.macrobert.co.uk/discovery/big-data-what.html
- Speech recognition and synthesis (e.g. Siri, Echo), Machine Translation, … with self-driving cars

Face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?

(F. Viola, C. Murri and Y. LeCun, 1998)

Viola–Jones Face detection (2001)

- Face detector consists of linear combination of ‘weak’ classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Taken from: https://ahprojects.com/cvdazzle/
A nice demo: http://vimeo.com/12774528

Drop-in labs for Learning

- Tuesdays 11:10-13:00, Wednesdays 13:10-15:00 in AT-6.06
- Starting in Week 2. Both sessions are the same.
- Worksheets available from the course webpage
- Purposes of lab sessions
 - Assistance in understanding basic algorithms and techniques of machine learning and data analysis
 - Assistance in programming with Matlab
 - Assistance in working on the assignment (CW1)
- Practice on machine learning using Matlab
- Work on toy problems for the topics taught in the course
- Demonstrator: Teodora Georgescu (Tuesdays), Riccardo Fiorista (Wednesdays)

Hiding from the machines (cameras)

The Viola-Jones face detector is fast, but has some drawbacks.

[Credit: Iain Murray and Steve Renals]
Attendance monitoring

- Attendance monitoring with Top Hat
 - Informatics 2B - Learning
 - Join code: 322890

Private study

- ~2 hours private study per lecture. **In addition to tutorials & assignments**
- No required textbook for Inf2b. There are notes and slides. See those for recommended books.
- Importance of maths skills (especially algebra)
 - Why should you remember and get familiar with maths formulas for machine learning?
 - Good understanding of the ideas
 - Guessing reasonable output of the model
 - Identifying/spotting the problems (bugs) with the system implemented
- Importance of programming practice [with Matlab or Python] (attend the drop-in labs!)

Private study (cont.)

- Warning: Inf2b is NOT an easy course
- Inf2b requires a solid maths background:
 - Linear Algebra
 - Calculus
 - Probability
- Independent learning (self-directed learning) is essential. See the following page regarding differences between secondary-school and university in terms of learning style and what is expected from you as a student.

https://www.birmingham.ac.uk/accessibility/transcripts/school-uni-differences.aspx

- For exam preparation, use not only notes, but also slides and tutorial sheets. NB: slides are not just the summaries of notes.

Maths skills

Useful webpage to check your maths:

http://www.mathsisfun.com/algebra

- Laws of exponents (Exponent rules)
 - e.g. \(x^m x^n = x^{m+n}\), \((x^m)^n = x^{mn}\)
- Log and exponential
 - e.g. \(\log(x^y) = n \log x + m \log y\), \(e^{x+y} = e^x e^y\)
- Quadratic equations and their solutions
 - e.g. \(ax^2 + bx + c = 0\), \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
- Vectors
 - \(v = (v_1, v_2, \ldots, v_n)^T\)
 - Notation: column/row vectors, transpose
 - Addition and subtraction \(v + w\)
 - Dot product (inner product) \(v \cdot w = u^T v\)
- Equation of a straight line, linear equations

Maths skills (cont.)

- Matrices \(A = (a_{ij})\), \(A_{ij} = a_{ij}\)
 - Addition, subtraction \(A + B, A - B\)
 - Multiplication \((AB)_{ij} = \sum_{k} a_{ik}b_{kj}\)
 - Transpose \((ABC)^T = C^T B^T A^T\)
 - Determinant \(|A|\)
 - Inverse \(A^{-1}A = AA^{-1} = I\)
 - Eigenvalues and eigenvectors
 - Vector spaces, subspaces, linear independence, basis and dimension, rank and nullity
 - Linear transformations \(y = Ax\)

NB: See Section 4 of Learning Note No. 1 for the notation we use.

Two hours study this week?

- Start to familiarise yourself with **Matlab** (or **Octave**)
 - Introductory worksheet on the course website
 - Many others at the end of a web search
- Learn **Matlab** try the lab sheets for the 1st lab this week.
- Love **Python**? Learn NumPy+SciPy+Matplotlib (instead, or as well)
- Vital skills:
 - add, average, multiply vectors and matrices
 - plot data stored in vectors
 - save/read data to/from files

Classroom

- Have a look at the lecture note and slides in advance to the lecture.
- Have questions prepared to ask.

Classification of oranges and lemons

Represent each sample as a point \((w, h)\) in a 2D space

A two-dimensional space

Oranges: 🍊

Lemons: 🍋
Photo image – pixels

Pixel image to a feature vector

Image data as a point in a vector space

Euclidean distance

Question

Example of image resolutions

Exercises in the lecture note 1

Summary

- Turn each cell (pixel) into a number (somehow, see notes)
- Unravel into a column vector, a feature vector

\[x = (x_1, x_2, \ldots, x_{64})^T, \quad x_i \in \{0, \ldots, 127\} \text{ or } x_i \in \{0, 1\} \]

http://alex.seewald.at/digits/

Distance between 2D vectors: \(u = (u_1, u_2)^T \) and \(v = (v_1, v_2)^T \)

\[r_2(u, v) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2} \]

Distance between \(D \)-dimensional vectors: \(u = (u_1, \ldots, u_D)^T \) and \(v = (v_1, \ldots, v_D)^T \)

\[r_2(u, v) = \sqrt{\sum_{k=1}^D (u_k - v_k)^2} \]

Measures similarities between feature vectors
i.e., similarities between digits, movies, sounds, galaxies, ...

Have high-resolution scans of digits.

How many pixels should be sample?

What are pros and cons of:

- \(2 \times 2\), \(4 \times 4\), \(16 \times 16\), or \(100 \times 100\)?

- Self-study everyday.
- Drop-in labs for Learning starts in Week 2 (21st, 22nd Jan.)
 Try the worksheet before the lab.
- Tutorial starts in Week 4.
- Discussion forum in Piazza
- Office hours: Wednesdays at 14:00-15:00 (TBC) in IF-3.04

- Try the exercises in the lecture note 1.
- No solutions will be published.
- In case you’re not sure if your answers are correct.
 - Discuss them with your classmates
 - Use the Inf2b-Learning discussion board on Piazza