Inf2b - Learning

Lecture 1: Introdution to Learning and Data

Hiroshi Shimodaira (Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR) School of Informatics University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/ https://piazza.com/ed.ac.uk/spring2020/infr08028 Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020

Welcome to Inf2b - Learning!

Today's Schedule:

- Course structure
- What is (machine) learning? (and why should you care?)

- Administrative stuff
 - How to do well
- Setting up a learning problem

(time allowing)

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

- 15+1 lectures (including review) Tuesdays, Fridays
- Tutorials (starting in week 4)

Course structure

- Drop-in labs for Learning (Tue 11:10-13:00, Wed 13:10-15:00)
- 1 assessed assignment (with drop-in labs) CW1: 06/Mar. - 03/Apr.

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Drop-in labs for Learning

- Tuesdays 11:10-13:00, Wednesdays 13:10-15:00 in AT-6.06 Starting in Week 2. Both sessoins are the same.
- Worksheets available from the course webpage
- Purposes of lab sessions
 - Assistance in understanding basic algorithms and techniques of machine learning and data analysis
 - Assistance in programming with Matlab
 - Assistance in working on the assignment (CW1)
- Practice on machine learning using Matlab
 - Work on toy problems for the topics taught in the course
- Demonstrator: Teodora Georgescu (Tuedays), Riccardo Fiorista (Wednesdays)

Face detection

How would you detect a face?

How does album software tag your friends?

http://demo.pittpatt.com

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Viola-Jones Face detection (2001)

- Face detector consists of linear combination of 'weak' classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect

Taken from: https://ahprojects.com/cvdazzle/

A nice demo: http://vimeo.com/12774628

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Hiding from the machines (cameras)

The Viola-Jones face detector is fast, but has some drawbacks.

Taken from: https://ahprojects.com/cvdazzle/

Applications of machine learning

Within informatics:

- Vision: as we've seen. (eg1, eg2)
- Graphics: increasingly data driven
- Al & Natural Language Processing (NLP): text search/summarisation, speech recognition/synthesis, e.g. IBM Watson
- Robotics: vision, planning, control, . . .
- Compilers: learning how to optimise and beyond: data analysis across the sciences

Every day:

- Adverts / recommendations all over the web · · · Big Data
- Discounts in Tescos http://www.mathworks.co.uk/discovery/big-data-matlab.html

• Speech recognition and synthesis (e.g. Siri, Echo), Machine Translation. . . . with self-driving cars

Intro summary

- Fit numbers in a program to data (i.e. train machines on data)
- More robust than hand-fitted rules
- Can't approach humans at some tasks (e.g., vision)
- Machines make better predictions in many other cases

Attendance monitoring	Private study	Private study (cont.)
 Attendance monitoring with Top Hat Informatics 2B - Learning Join code: 322890 	 ~2 hours private study per lecture in addition to tutorials & assignments No required textbook for Inf2b There are notes and slides. See those for recommended books. Importance of maths skills (especially algebra) Why should you remember and get familiar with maths formulas for machine learning? Good understanding of the ideas Guessing reasonable output of the model Identifying/spotting the problems (bugs) with the system implemented Importance of programming practice [with Matlab or Python] (attend the drop-in labs!) 	Warning: Inf2b is NOT an easy course Inf2b requires a solid maths background: Linear Algebra Calculus Probability Independent learning (self-directed learning) is essential. See the following page regarding differences between secondary-school and university in terms of learning style and what is expected from you as a student. https://www.birmingham.ac.uk/accessibility/transcripts/school-uni-differences.aspx For exam preparation, use not only notes, but also slides and tutorial sheets. NB: slides are not just the summaries of notes.
Inf2b - Learning: Lecture 1	Inf2b - Learning: Lecture 1 Introdution to Learning and Data 13	Inf2b - Learning: Lecture 1

Maths skills	Maths skills (cont.)	Two hours study this week?
Useful webpage to check your maths: http://www.mathsisfun.com/algebra • Laws of exponents (Exponent rules) e.g. $x^m x^n = x^{m+n}$, $(x^m)^n = x^{mn}$ • Log and exponential e.g. $\log(x^n y^m) = n \log x + m \log y$, $e^{\ln x} = x$ • Quadratic equations and their solutions e.g. $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ • Vectors $\mathbf{v} = (v_1, v_2, \dots, v_D)^T$ • Notation: column/row vectors, transpose • Addition and subtraction eg. $\mathbf{u} + \mathbf{v}$ • Dot product (inner product) $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$ • Equation of a straight line, linear equations	• Matrices $A = (a_{ij})$, $A_{ij} = a_{ij}$ • Addition, subtraction $A + B$, $A - B$ • Multiplication $(AB)_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj}$ • Transpose $(ABC)^T = C^T B^T A^T$ • Determinant $ A $ • Inverse $A^{-1}A = AA^{-1} = I$ • Eigenvalues and eigenvectors • Vector spaces, subspaces, linear independence, basis and dimension, rank and nullity • Linear transformations $y = Ax$ NB: See Section 4 of Learning Note No. 1 for the notation we use.	• Start to familiarise yourself with MATLAB (or OCTAVE) Introductory worksheet on the course website Many others at the end of a web search • Learn Matlab try the lab sheets for the 1st lab this week. • Love Python? Learn NumPy+SciPy+Matplotlib (instead, or as well) • Vital skills: • add, average, multiply vectors and matrices • plot data stored in vectors • save/read data to/from files

Pixel image to a feature vector

Turn each cell (pixel) into a number (somehow, see notes) Unravel into a column vector, a feature vector \Rightarrow represented digit as point in 64D

$$\mathbf{x} = (x_1, x_2, \dots, x_{64})^T, \quad x_i \in \{0, \dots, 127\} \text{ or } x_i \in \{0, 1\}$$

http://alex.seewald.at/digits/

Question

Image data as a point in a vector space

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Euclidean distance

Distance between 2D vectors: $\mathbf{u} = (u_1, u_2)^T$ and $\mathbf{v} = (v_1, v_2)^T$

$$r_2(\mathbf{u},\mathbf{v}) = \sqrt{(u_1-v_1)^2+(u_2-v_2)^2}$$

Distance between *D*-dimensional vectors: $\mathbf{u} = (u_1, \dots, u_D)^T$ and $\mathbf{v} = (v_1, \dots, v_D)^T$

$$r_2(\boldsymbol{u},\boldsymbol{v}) = \sqrt{\sum_{k=1}^{D} (u_k - v_k)^2}$$

Measures similarities between feature vectors

i.e., similarities between digits, movies, sounds, galaxies, ...

Have high-resolution scans of digits.

How many pixels should be sample?

What are pros and cons of:

 2×2 , 4×4 , 16×16 , or 100×100 ?

Example of image resolutions

Inf2b - Learning: Lecture 1 Introdution to Learning and Data

Exercises in the lecture note 1

- Try the exercises in the lecture note 1.
- No solutions will be published.
- In case you're not sure if your answers are correct.
 - Discuss them with your classmates
 - Use the Inf2b-Learning discussion board on Piazza

Summary

- Self-study everyday.
- Drop-in labs for Learning starts in Week 2 (21st, 22nd

Try the worksheet before the lab.

- Tutorial starts in Week 4.
- Discussion forum in Piazza
- Office hours: Wednesdays at 14:00-15:00 (TBC) in IF-3.04