Inf2b - Learning
Lecture 1: Introduction to Learning and Data

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
https://piazza.com/ed.ac.uk/spring2020/infr08028
Office hours: Wednesdays at 14:00-15:00 in IF-3.04

Jan-Mar 2020
Today’s Schedule:

1. Course structure
2. What is (machine) learning? (and why should you care?)
3. Administrative stuff
 - How to do well
4. Setting up a learning problem (time allowing)
Course structure

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

- 15+1 lectures (including review) - Tuesdays, Fridays
- Tutorials (starting in week 4)
- Drop-in labs for Learning (Tue 11:10-13:00, Wed 13:10-15:00)
- 1 assessed assignment (with drop-in labs)
 CW1 : 06/Mar. – 03/Apr.
Drop-in labs for Learning

- Tuesdays 11:10-13:00, Wednesdays 13:10-15:00 in AT-6.06
 Starting in Week 2. Both sessions are the same.
- Worksheets available from the course webpage
- Purposes of lab sessions
 - Assistance in understanding basic algorithms and techniques of machine learning and data analysis
 - Assistance in programming with Matlab
 - Assistance in working on the assignment (CW1)
- Practice on machine learning using Matlab
 - Work on toy problems for the topics taught in the course
- Demonstrator: Teodora Georgescu (Tuesdays), Riccardo Fiorista (Wednesdays)
Face detection

How would you detect a face?

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)

How does album software tag your friends?

http://demo.pittpatt.com/
Viola–Jones Face detection (2001)

- Face detector consists of linear combination of 'weak' classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Taken from: https://ahprojects.com/cvdazzle/
A nice demo: http://vimeo.com/12774628
Hiding from the machines (cameras)

The Viola-Jones face detector is fast, but has some drawbacks.

Taken from: https://ahprojects.com/cvdazzle/
Applications of machine learning

Within informatics:

- **Vision:** as we’ve seen. (eg1, eg2)
- **Graphics:** increasingly data driven
- **AI & Natural Language Processing (NLP):** text search/summarisation, speech recognition/synthesis, e.g. IBM Watson
- **Robotics:** vision, planning, control, . . .
- **Compilers:** learning how to optimise and beyond: data analysis across the sciences

Every day:

- Adverts / recommendations all over the web . . . Big Data
- Speech recognition and synthesis (e.g. Siri, Echo), Machine Translation, . . . with self-driving cars
Fit numbers in a program to data (i.e. train machines on data)
More robust than hand-fitted rules
Can’t approach humans at some tasks (e.g., vision)
Machines make better predictions in many other cases
Attendance monitoring with Top Hat

- Informatics 2B - Learning
- Join code: 322890
Private study

- ~2 hours private study per lecture in addition to tutorials & assignments

- No required textbook for Inf2b There are notes and slides. See those for recommended books.

- Importance of maths skills (especially algebra)
 Why should you remember and get familiar with maths formulas for machine learning?
 - Good understanding of the ideas
 - Guessing reasonable output of the model
 - Identifying/spotting the problems (bugs) with the system implemented

- Importance of programming practice [with Matlab or Python] (attend the drop-in labs!)
Warning: Inf2b is NOT an easy course

Inf2b requires a solid maths background:
 - Linear Algebra
 - Calculus
 - Probability

Independent learning (self-directed learning) is essential. See the following page regarding differences between secondary-school and university in terms of learning style and what is expected from you as a student.

https://www.birmingham.ac.uk/accessibility/transcripts/school-uni-differences.aspx

For exam preparation, use not only notes, but also slides and tutorial sheets. NB: slides are not just the summaries of notes.
Useful webpage to check your maths:
http://www.mathsisfun.com/algebra

- **Laws of exponents (Exponent rules)**

 e.g. \(x^m x^n = x^{m+n} \), \((x^m)^n = x^{mn}\)

- **Log and exponential**

 e.g. \(\log(x^n y^m) = n \log x + m \log y \), \(e^{\ln x} = x \)

- **Quadratic equations and their solutions**

 e.g. \(ax^2 + bx + c = 0 \), \(x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \)

- **Vectors** \(\mathbf{v} = (v_1, v_2, \ldots, v_D)^T \)

 - Notation: column/row vectors, transpose
 - Addition and subtraction e.g. \(\mathbf{u} + \mathbf{v} \)
 - Dot product (inner product) \(\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} \)

- **Equation of a straight line, linear equations**
Maths skills (cont.)

- Matrices \(A = (a_{ij}) \), \(A_{ij} = a_{ij} \)
 - Addition, subtraction \(A + B, \ A - B \)
 - Multiplication \((AB)_{ij} = \sum_{d=1}^{d} a_{ik}b_{kj}\)
 - Transpose \((ABC)^T = C^T B^T A^T\)
 - Determinant \(|A|\)
 - Inverse \(A^{-1}A = AA^{-1} = I \)
 - Eigenvalues and eigenvectors
 - Vector spaces, subspaces, linear independence, basis and dimension, rank and nullity
 - Linear transformations \(y = Ax \)

NB: See Section 4 of Learning Note No. 1 for the notation we use.
Two hours study this week?

- Start to familiarise yourself with **MATLAB** (or **OCTAVE**)
 Introductory worksheet on the course website
 Many others at the end of a web search
- Learn Matlab try the lab sheets for the 1st lab this week.
- Love Python? Learn NumPy+SciPy+Matplotlib (instead, or as well)

Vital skills:
- add, average, multiply vectors and matrices
- plot data stored in vectors
- save/read data to/from files
- Have a look at the lecture note and slides in advance to the lecture.
- Have questions prepared to ask.
Classification of oranges and lemons
A two-dimensional space

Represent each sample as a point \((w, h)\) in a 2D space.
Pixel image to a feature vector

Turn each cell (pixel) into a number (somehow, see notes)
Unravel into a column vector, a feature vector
⇒ represented digit as point in 64D

\[\mathbf{x} = (x_1, x_2, \ldots, x_{64})^T, \quad x_i \in \{0, \ldots, 127\} \text{ or } x_i \in \{0, 1\} \]

http://alex.seewald.at/digits/
Image data as a point in a vector space

\[\mathbf{x} = (2, 6, 5)^T \]
Euclidean distance

Distance between 2D vectors: \(\mathbf{u} = (u_1, u_2)^T \) and \(\mathbf{v} = (v_1, v_2)^T \)

\[
r_2(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}
\]

Distance between \(D \)-dimensional vectors: \(\mathbf{u} = (u_1, \ldots, u_D)^T \)
and \(\mathbf{v} = (v_1, \ldots, v_D)^T \)

\[
r_2(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{k=1}^{D} (u_k - v_k)^2}
\]

Measures similarities between feature vectors
i.e., similarities between digits, movies, sounds, galaxies, \ldots
Have high-resolution scans of digits.

How many pixels should be sample?

What are pros and cons of:

2×2, 4×4, 16×16, or 100×100?
Example of image resolutions
Try the exercises in the lecture note 1.
- No solutions will be published.
- In case you’re not sure if your answers are correct.
 - Discuss them with your classmates
 - Use the Inf2b-Learning discussion board on Piazza
Summary

- Self-study everyday.
- Drop-in labs for Learning starts in Week 2 (21st, 22nd Jan.)
 Try the worksheet before the lab.
- Tutorial starts in Week 4.
- Discussion forum in Piazza
- Office hours: Wednesdays at 14:00-15:00 (TBC) in IF-3.04