Inf2b Learning and Data
Lecture 1: Introduction to Learning and Data

Hiroshi Shimodaira
(Credit: Iain Murray and Steve Renals)

Centre for Speech Technology Research (CSTR)
School of Informatics
University of Edinburgh

http://www.inf.ed.ac.uk/teaching/courses/inf2b/
piazza.com/ed.ac.uk/spring2017/infr08009learning

Jan-Mar 2017
Welcome to Inf2b!

Inf2b: Algorithms, Data Structures (ADS), and Learning

Today’s Schedule:

1. Course structure
2. What is (machine) learning? (and why should you care?)
3. Administrative stuff
 - How to do well
4. Setting up a learning problem (time allowing)
Course structure

http://www.inf.ed.ac.uk/teaching/courses/inf2b/

Constituents:

- 30 lectures (including review)
- Tutorials (starting in week 2)
- Drop-in labs for Learning (Wednesdays 16:10-17:00)
- 2 assessed assignments (with drop-in labs)

 CW2 (Learning): 14/Mar. – 05/Apr.

Equal split into two threads:

- Algorithms and Data Structures – KK (Kyriakos Kalorkoti)
 Design and analysis of correct, efficient and elegant data structures and algorithms.
- Learning – Hiroshi
 Building models that describe a data set and can make predictions about new data
Drop-in labs for Learning

- Wednesday 16:10-18:00 in FH-3.D01 (Week 2)
- Wednesdays 16:10-17:00 in FH-3.D01 (Week 3 – Week 7)

Purposes of lab sessions

- Assistance in understanding basic algorithms and techniques of machine learning and data analysis
- Assistance in programming with Matlab
- Assistance in working on the 2nd assignment (CW2)

Practice on machine learning using Matlab

- Work on toy problems for the topics taught in the course

Demonstrator: Andreas Kapourain
Face detection

How would you detect a face?

How does album software tag your friends?

http://demo.pittpatt.com/

(R. Vaillant, C. Monrocq and Y. LeCun, 1994)
Viola–Jones Face detection (2001)

- Face detector consists of linear combination of 'weak' classifiers that utilise five types of primitive features.
- The detector is trained on a training data set of a large number of positive and negative samples.
- Scan the input image with a sub-window (24 x 24 pixels) to detect a face.

Taken from: http://ahprojects.com/projects/cv-dazzle
A nice demo: http://vimeo.com/12774628
Hiding from the machines (cameras)

The Viola-Jones face detector is fast, but has some drawabacks.

Taken from: http://ahprojects.com/projects/cv-dazzle
Applications of machine learning

Within informatics:

- **Vision**: as we’ve seen. [another e.g.]
- **Graphics**: increasingly data driven
- **AI & Natural Language Processing (NLP)**: text search/summarisation, speech recognition/synthesis, e.g. IBM Watson
- **Robotics**: vision, planning, control, . . .
- **Compilers**: learning how to optimise and beyond: data analysis across the sciences

Every day:

- Adverts / recommendations all over the web · · · Big Data
- Discounts in Tescos [http://www.mathworks.co.uk/discovery/big-data-matlab.html]
- Speech recognition and synthesis (e.g. Siri), Machine Translation, . . . with self-driving cars
Fit numbers in a program to data (i.e. train machines on data)
More robust than hand-fitted rules
Can’t approach humans at some tasks (e.g., vision)
Machines make better predictions in many other cases
Private study

- ~2 hours private study per lecture *in addition to tutorials & assignments*
- No required textbook for Inf2b There are notes. See those for recommended books.
- Importance of maths skills (especially algebra)
 Why should you remember and get familiar with maths formulas for machine learning?
 - Good understanding of the ideas
 - Guessing reasonable output of the model
 - Identifying/spotting the problems (bugs) with the system implemented
- Importance of programming practice [with Matlab or Python] (attend the drop-in labs!)
Useful webpage to check your maths:
http://www.mathsisfun.com/algebra

- Laws of exponents (Exponent rules)
 e.g. $x^m x^n = x^{m+n}$, $(x^m)^n = x^{mn}$

- Log and exponential
 e.g. $\log(x^n y^m) = n \log x + m \log y$, $e^{\ln x} = x$

- Quadratic equations and their solutions
 e.g. $ax^2 + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$

- Vectors $\mathbf{v} = (v_1, v_2, \ldots, v_d)^T$
 - Notation: column/row vectors, transpose
 - Addition and subtraction eg. $\mathbf{u} + \mathbf{v}$
 - Dot product (inner product) $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$

- Equation of a straight line, linear equations
Matrices \(A = (a_{ij}), \quad A_{ij} = a_{ij} \)
- Addition, subtraction \(A+B, \quad A-B \)
- Multiplication \((AB)_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj} \)
- Transpose \((ABC)^T = C^T B^T A^T \)
- Determinant \(|A| \)
- Inverse \(A^{-1}A = AA^{-1} = I \)
- Eigen values and eigen vectors
- Vector spaces, subspaces, linear independence, basis and dimension, rank and nullity
- Linear transformations \(y = Ax \)

NB: See Section 4 of Learning Note No. 1 for the notation we use.
Two hours study this week?

- Start to familiarise yourself with MATLAB (or OCTAVE)
 Introductory worksheet on the course website
 Many others at the end of a web search
- Learn Matlab try the lab sheets for the 1st lab in Week2
- Love Python? Learn NUMPY+SCIPY+MATPLOTLIB
 (instead, or as well)

- Vital skills:
 - add, average, multiply vectors and matrices
 - plot data stored in vectors
 - save/read data to/from files
Classification of oranges and lemons
A two-dimensional space

Represent each sample as a point \((w, h)\) in a 2D space.
Handwritten digits recognition

http://alex.seewald.at/digits/
A 64-dimensional space

Turn each cell (pixel) into a number (somehow, see notes)
Unravel into a column vector, a feature vector
⇒ represented digit as point in 64D

\[\mathbf{x} = (x_1, x_2, \ldots, x_{64})^T, \quad x_i \in [0, 127] \text{ or } x_i \in [0, 1] \]

http://alex.seewald.at/digits/
Image data as a point in a vector space

$x = (2, 6, 5)^T$
Euclidean distance

Distance between 2D vectors: \(\mathbf{u} = (u_1, u_2)^T \) and \(\mathbf{v} = (v_1, v_2)^T \)

\[
r_2(\mathbf{u}, \mathbf{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}
\]

Distance between \(d \)-dimensional vectors: \(\mathbf{u} = (u_1, \ldots, u_d)^T \) and \(\mathbf{v} = (v_1, \ldots, v_d)^T \)

\[
r_2(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{k=1}^{d} (u_k - v_k)^2}
\]

Measures similarities between feature vectors
i.e., similarities between digits, movies, sounds, galaxies, \ldots
Have high-resolution scans of digits.

How many pixels should be sampled?

What are pros and cons of:

- 2×2
- 4×4
- 16×16
- 100×100
Example of image resolutions

Accountability

Accountability