
Inf2B Coursework (Ver. 0.9.5)

Submission due: 4pm, Tuesday 14th April 2020

Hiroshi Shimodaira

1 Outline

The coursework consists of two tasks, Task 1 – data analysis and classification with multivariate
Gaussian classifiers, Task 2 – neural networks.

You are required to submit (i) two reports, one for each Task, (ii) code, and (iii) results of exper-
iments if specified, using the electronic submission via Learn. Details are given in the corresponding
task sections below. Some of the code and results of experiments submitted will be checked with
an automated marking system in the DICE computing environment, so that it is essential that you
follow the syntax of function and file format specified. No marks will be given if it does not meet
the specifications. Some helper tools to check your files and function template files will be provided.
Please check the following coursework web-page frequently to see any updates.

https://www.inf.ed.ac.uk/teaching/courses/inf2b/coursework/cwk.html

Efficiency of code and programming style (e.g. comments, indentation, and variable names) count.
Those pieces of code that do not run or that do not finish in approximately five minutes on a standard
DICE machine will not be marked. This coursework is out of 100 marks and forms 25% of your final
Inf2b grade.

This coursework is individual coursework - group work is forbidden. You should work alone to
complete the coursework. You are not allowed to show any written materials, the data provided to
you, results of your experiments, or code to anyone else. This includes posting your coursework to
the internet and making it accessible to other people not only during the coursework period, but also
after that. Never copy-and-paste material of other people (including those available on the internet)
into your coursework and edit it. You can, however, use the code provided in the lecture notes, slides,
and labs of this course, excluding some functions described later. High-level discussion that is not
directly related to this coursework is fine.

Please note that assessed work is subject to University regulations on academic misconduct:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

For late coursework and extension requests, see the page: http://web.inf.ed.ac.uk/infweb/student-services/

ito/admin/coursework-projects/late-coursework-extension-requests

Note that any extension request must be made to the ITO, and not to the lecturer.

Programming: Write code in Matlab(R2018a)/Octave or Python(version 3.6)+Numpy+Scipy+Matplolib.
Your code should run on standard DICE machines without the need of any additional software. Code
templates are available from the following directory:

/afs/inf.ed.ac.uk/group/teaching/inf2b/cwk/matlab code

There are some functions that you should write the code by yourself rather than using those of standard
libraries available. See section 4 for details.

This document assumes programming in Matlab. For Python, put all the specified functions into
a single file for each Task, so that task1.py for Task 1, and task2.py for Task 2. Output data should
be stored in Matlab’s MAT binary format.

2 Data

2.1 Data for Task 1

The coursework employs the Anuran Calls (MFCCs) Data Set introduced by J. Colonna etal..1

1 https://doi.org/10.1007/978-3-319-46307-0_13

1

https://www.inf.ed.ac.uk/teaching/courses/inf2b/coursework/cwk.html
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
https://doi.org/10.1007/978-3-319-46307-0_13


3 Task specifications 2

Your data set file, 'dset.mat', which is a subset of the original data set, should be found in your
coursework data directory (denoted as YourDataDir hereafter) :

/afs/inf.ed.ac.uk/group/teaching/inf2b/cwk/d/UUN/

where UUN denotes your UUN (DICE login name).
You can use Matlab’s load() function to load the data set in the following manner:

load(pathname);

where pathname denotes the absolute pathname of your data set file. Once you load the data set, you
will find the following variables.

Matlab variable (Class) Description

X[N, D] (double)) feature vectors
Y family[N,1] (int32) family class labels
Y genus[N,1] (int32) genus class labels
Y species[N,1] (int32) species class labels
list family[4,1] (cell) family class names
list genus[8,1] (cell) genus class names
list species[10,1] (cell) species class names

where N and D denotes the total number of samples and the dimension of feature vector (D=24),
respectively.

Among the three different levels of taxonomic rank provided in the original data set, we use ’species’
in the coursework. There are ten different species, so that the number of classes for classification is
ten, i.e., C = 10. The variable, Y species(i), contains the integer number that corresponds to the
species of i-th sample, whose feature vector is X(i,:). Hereafter, Y denotes Y species.
The variable, list species, holds the list of species names.

The following table shows the number of samples for each species in the original data set, which
may be different from the number samples in your data set.

Family Genus Species # of samples

Leptodactylidae Leptodyctylus Leptodactylus fuscus 222
Adenomera Adenomera andreae 496

Adenomera hylaedactyla 3049

Hylidae Dendropsophus Hyla minuta 229
Scinax Scinax ruber 96
Osteocephalus Osteocephalus oophagus 96
Hypsiboas Hypsiboas cinerascens 429

Hypsiboas cordobae 702

Bufonidae Rhinella Rhinella granulosa 135

Dendrobatidae Ameerega Ameerega trivittata 544

The data set has not been split in two sets for training and testing. You need to split the data set
according to the instructions described later.

2.2 Data for Task 2

The data for Task 2 is stored in the plain-text file named 'task2 data.txt' in YourDataDir. For
details, see the Task 2 specifications.

3 Task specifications

Task1 – Anuran-Call analysis and classification [50 marks]

Task 1.1 [5 marks]

(a) Write a Matlab function task1 1() that



3 Task specifications 3

• calculates the covariance matrix, S, and correlation matrix, R, for the data set X, using
the maximum likelihood estimation (MLE),

• saves S as 't1 S.mat',
• saves R as 't1 R.mat'.

The specifications of the variables are as follows.

S D-by-D covariance matrix (in double)
R D-by-D correlation matrix (in double)

Save the code as 'task1 1.m'. Note that, hereafter, function and file names are case sensi-
tive, and your code should save output files in the current working directory. The syntax
of the function should be as follows.

function task1 1(X, Y)

where

X N-by-D matrix of feature vector (of floating-point numbers in
double-precision format, which is the default in Matlab), where
N is the number of samples, and D is the the number of elements
in a sample. Note that each sample is represented as a row vector
rather than a column vector.

Y N-by-1 label vector (in int32) for X. Y(i) is the class number of
X(i,:).

(b) Run the following:

task1 1(X, Y);

Make sure that the two output files are created properly. It will be a good idea that you
write a script to run the above.

Task 1.2 [5 marks]
Look into the correlation matrix, R, you obtained, and describe your findings in your report,
using graphs.

Task 1.3 [10 marks]

(a) Write a Matlab function task1 3() that

• calculates the eigenvectors, EVecs and eigenvalues, EVals, of a covariance matrix, and
calculates the cumulative variance2, Cumvar,

• finds the minimum number of PCA dimensions to cover each 70%, 80%, 90%, 95% of
the total variance, and store the values to a vector MinDims,

• saves the eigenvectors to a file named 't1 EVecs.mat',
• saves the eigenvalues to a file named 't1 EVals.mat',
• saved the cumulative variance to a file named 't1 Cumvar.mat',
• saves the the numbers of minimum dimensions, MinDims, to a fle named 't1 MinDims.mat',

Save the function as 'task1 3.m'.
The syntax of the function should be as follows.

function task1 3(Cov)

where Cov is a D-by-D covariance matrix (double).

The specifications of the variables are as follows.

EVecs D-by-D matrix of column-wise eigen vectors (in double)
EVals D-by-1 vector of eigen values (in double)
Cumvar D-by-1 vector of cumulative variance (in double)
MinDims 4-by-1 vector of (in int32)

2 Cumulative variance denotes the cumulative sum of variances such that CumVark =
∑k

i=1 vi, where vi denotes the
variance of i-th variable. In the context of PCA, vi is the variance of the i-th principal component.



3 Task specifications 4

The eigenvalues should be sorted in descending order, so that λ1 is the largest and λD is
the smallest, and i’th column of EVecs should hold the eigenvector that corresponds to λi.

Eigenvectors are not unique by definition in terms of scale (length) and sign, but we make
them unique in this coursework by putting the following additional constraints, which your
program should employ.

• The first element of each eigenvector is non-negative. If it is not the case, i.e. if the
first element is negative, multiply -1 to the eigenvector (i.e. v ← −v) so that it gets
the opposite direction.

• Each eigenvector is a unit vector, i.e. ‖v‖ = 1, where v denotes an eigenvector. As
far as you use Matlab’s eig() or Python’s numpy.linalg.eig(), you do not need to care
about this, since either function ensures unit vectors.

(b) Run the following:

task1 3(S);

In your report, show a graph of cumulative variance.

(c) Plot all data on a 2D-PCA plane, clarifying data of different classes, and show the graph
in your report. There is no need to submit a code file for this.

Task 1.4 [25 marks]

(a) Write a Matlab function task1 mgc cv() that carries out a classification experiment with
multivariate Gaussian classifiers, using k-fold cross validation, and save the code as 'task1 mgc cv.m'.
The syntax of the function is as follows

function task1 mgc cv(X, Y, CovKind, epsilon, Kfolds)

where CovKind is the type of covariance matrix - 1 for full covariance matrix, 2 for diagonal
covariance matrix, and 3 for shared covariance matrix, epsilon is a scalar (double) for the
regularisation of covariance matrix described in Lecture 8, in which we add a small positive
number (ε) to the diagonal elements of covariance matrix, i.e. Σ ← Σ + εI, where I is
the identity matrix, Kfolds is the number of folds (partitions) in k-fold cross validation.
Assume a uniform prior distribution over class, and use MLE for the estimation of model
parameters.

At first, the function should split the data set in Kfolds partitions for cross validation,
whose information is stored in a N-by-1 vector, PMap, where PMap(i) holds the partition
number that i-th sample is assigned to, and save it to a file named 't1 mgc <Kfolds>cv PMap.mat',
where <Kfolds> is the number of folds.

For each fold, p, the function should

• estimate the mean vector and covariance matrix for each class from the samples that
do not belong to partition p.

• save the mean vectors (Ms) to 't1 mgc <Kfolds>cv<p> Ms.mat',
• save the regularised covariance matrices (Covs) to 't1 mgc <Kfolds>cv<p> ck<CovKind> Covs.mat',
• carry out a classification experiment using the samples of partition p, and save the

confusion matrix (CM) to 't1 mgc <Kfolds>cv<p> ck<CovKind> CM.mat',
• calculate the final confusion matrix (where each element is a relative frequency) and

save it to 't1 mgc <Kfolds>cv<L> ck<CovKind> CM.mat', where L = Kfolds + 1.

In the above, replace <p>, <Kfolds>, <CovKind>, and <L> with the actual values. The
specifications of the variables are as follows.

PMap N-by-1 vector (in int32)
Ms C-by-D matrix of mean vectors (in double)
Covs C-by-D-by-D array of covariance matrices (in double)
CM C-by-C confusion matrix (in double)

Details about the evaluation with the k-fold cross validation and the variables to save are
specified in separate sheets.

(b) Run the function with epsilon=0.01 and Kfolds=5 for each CovKind=1,2,3, and report
the accuracy (correct classification rate) in your report.



3 Task specifications 5

Task 1.5 [5 marks]
Using CovKind=1 (i.e. full covariance), investigate how the classification accuracy changes with
respect to the regularisation parameter, epsilon. Plot a graph and describe your findings in
your report.

Task 2 – Neural networks [50 marks]

In this task, you implement neural networks for binary classification problems, in which input feature
is represented as a two-dimensional vector (x1, x2)

T . We assume that decision regions are defined
with polygon(s), whose specifications are given in the polygon specification file 'task2 data.txt' 3 in
YourDataDir. The file is a plain-text file, in which each line specifies the name of the polygon and
the coordinates of its vertices {(xp1, xp2)}Pp=1 in a sequential order, where P is the number of vertices.
The following is an example of the file.

Polygon A: -1 -0.5 6 1.25 6 6.25 1 6
Polygon B: 2.5 3 3.5 3 3.5 3.5 2.5 3.5

where two polygons, Polygon A and Polygon B, are defined. In each line, the first two numbers (e.g.
-1 and -0.5 for Polygon A) from the left specify the coordinates (x11, x12) of the first vertex, followed
by the coordinates (x21, x22) for the second vertex, and so on. Please note that vertices are given
in anti-clockwise order for Polygon A, and in clockwise order for Polygon B. You will see that each
polygon has four vertices, meaning a quadrangle in this case.

Task 2.1 [3 marks]
Consider a single neuron with a unit function, whose output is defined as y(x) = h(wTx), where
h(a) is a step function such that h(a) = 1 if a > 0, and h(a) = 0 otherwise.4 Implement this
neuron as a Matlab function:

function [Y] = task2 hNeuron(W, X)

where X is a N-by-D data matrix (double), W is a (D+1)-by-1 weight matrix (double), Y is a
N-by-1 output vector (double). Save the function as 'task2 hNeuron.m'.

Note that this function should be capable of taking more than one input vector stored in a
matrix X, where each input vector is represented as a row vector rather tha:n a column one, and
gives corresponding output as a vector Y.

Task 2.2 [3 marks]
Similar to task2 hNeuron() above, but consider another neuron which employs the logistic
sigmoid function g(a) = 1

1+exp(−a) . Implement this neuron as a Matlab function:

function [Y] = task2 sNeuron(W, X)

and save it as 'task2 sNeuron.m'.

Task 2.3 [8 marks]
Find the structure (i.e. connection of neurons) and weights of the neural network that classifies
the inside of Polygon A as Class 1 (i.e. y(x) = 1), and the outside and periphery as Class 0
(i.e. y(x) = 0), where each neuron is modelled with task2 hNeuron().

This task is meant for you to work using pen and paper (and calculator), but it is also fine that
you write a piece of code to find the weights. If it is the case, save the script or function as
'task2 find hNN A weights.m'.

Let w`
ji denote the weight of neuron j in layer ` from neuron i in layer `−1.5 Normalise your

weights in such a way that maxi |w`
ji| = 1. Write the weights in a plain text file 'task2 hNN A weights.txt'

in the following format.

3 You are not allowed to show this file of yours to anyone else.
4 NB: The step function defined here is slightly different from the one in the lectures.
5 The input layer where input date are fed is regarded as layer 0 (zero). The output node of a single-layer neural

network is in layer 1.



3 Task specifications 6

You write each w`
ji in a separate line, for ` = 1, ..., j = 1, ..., and i = 0, 1, ..., so that the first line

contains w1
10 followed by w1

11 and w1
12 in the second line and the third line, respectively. The

format of each line should be as follows:

W(`,j,i) : <the value of w`
ji>

where “<the value of w`
ji>” is the actual value of the weight. For example, if w1

10 = 0.35, the
first line should look like this:

W(1,1,0) : 0.35

Spaces are only allowed just before and after “:”, and none in other places.p

In your report, show the structure of the network and explain how you found the weights.

Task 2.4 [5 marks]
Implement the neural network above as a function:

function [Y] = task2 hNN A(X)

and save it as 'task2 hNN A.m', where X and Y follow the same formats as the ones shown in
Task 2.1, but we assume D=2 hereafter.

Task 2.5 [4 marks]
Using task2 hNN A(), write a script that plots the decision regions in a 2D space, and save the
code as 'task2 plot regions hNN A.m'. Save the graph as a PDF file named 't2 regions hNN A.pdf'.

Task 2.6 [6 marks]
We now consider the decision regions formed with Polygon A and Polygon B, whose classification
rule is shown below:

Class 1 : Ā ∩B
Class 0 : A ∪ B̄

where A and B denote the inside of the corresponding polygon, Ā denotes the complement of
A.

Implement the corresponding neural network as a function:

function [Y] = task2 hNN AB(X)

and save it as 'task2 hNN AB.m'. Note that each neuron should be modelled with task2 hNeuron().

Task 2.7 [4 marks]
Using task2 hNN AB(), write a script that plots the decision regions in a 2D space, and save the
code as 'task2 plot regions hNN AB.m'. Save the graph as a PDF file named 't2 regions hNN AB.pdf'.

Task 2.8 [5 marks]
We now consider another network task2 sNN AB() obtained by replacing all nodes of task2 hNeuron()

with those of task2 sNeuron() in task2 hNN AB(), so that each neuron is now modelled with
task2 sNeuron(). Implement the neural network as a function:

function [Y] = task2 sNN AB(X)

and save it as 'task2 sNN AB.m'. Note that you will need to modify the weights to approximate
the decision regions properly.

Task 2.9 [4 marks]
Using task2 sNN AB(), write a script that plots the decision regions in a 2D space, and save the
code as 'task2 plot regions sNN AB.m'. Save the graph as a PDF file named 't2 regions sNN AB.pdf'.

Task 2.10 [8 marks]
Investigate and discuss the decision regions for task2 sNN AB(), clarifying how and why they
are different from those for task2 hNN AB().



4 Functions that are not allowed to use 7

4 Functions that are not allowed to use

Since one of the objectives of this coursework is to understand and implement basic algorithms for
machine learning, you are not allowed to use those functions in standard libraries listed below. You
should write the code by yourself using the basic operations of arithmetic for scalars, vectors, and
matrices. If it is the case, use a different function name from the original one in standard libraries
(e.g. MyCov() for cov() as shown in the table below). You may, however, use them for comparison
purposes, i.e. to check your code.

Description of function Typical names Suggested name to implement

Pairwise (squared) Euclidean distance pdist2() MySqDist()
Compute the mean mean() MyMean()
Compute the covariance matrix cov() MyCov()
Compute the correlation matrix corr() MyCorr()
Compute Gaussian probability densities mvnpdf()
K-NN classification fitcknn() run knn classifier()
K-means clustering kmeans() my kMeansClustering()
Compute confusion matrix confusion() comp confmat()
Other utilities for classification

You may use those functions or operations:

Description Typical names

Sum function sum()
Cumulative sum cumsum()
Square root function sqrt()
Exponential function e, exp()
Logarithmic function log(), ln()
Matrix transpose transpose(), '
Matrix inverse inv()
Determinant det()
Log determinant logdet() · · · available in Inf2b cwk directory

Eigen values/vectors eig()
Sort sort()
Sample mode mode()
Vectorisation helpers bsxfun(), arrayfun()

(NB: the list is not exhaustive)

5 Submission

You should submit your work electronically via Learn by the deadline.
Since marking for each task will be done separately, you should prepare separate reports for

the two tasks, and save your report files in PDF format and name them 'report task1.pdf' and
'report task2.pdf'. Do not indicate your name anywhere in your reports. Your report should be
concise and brief for each task.

In the following instructions, DICE environment is assumed, but it is possible to do the same more
easily on a personal computer if the archiver tool, ’tar’, is available in the environment.

Step 1 - Create a directory for submission
Create a directory named LearnCW, copy all the files to submit to the directory. A list of files to
submit is available from the coursework web page. In addition to the files shown on the list, you
should include the functions of your own such as MyCov.m so that your submitted code runs
properly on DICE without the need of additional software. Do NOT, however, include the data
set files in it.



5 Submission 8

Step 2 - Create an archive file for submission
Run the following command in a terminal window.6

tar -cvzf inf2b-cw-UUN.tar.gz LearnCW

where UUN denotes your UUN (DICE login name, e.g. s1234567). The command above cre-
ates an archive file named inf2b-cw-UUN.tar.gz. Before moving to Step 3, run the following
command to check the contents of the archive file you created.

tar -tvf inf2b-cw-UUN.tar.gz

Step 3 - Submit the archive file via Learn
Choose “Assessment” from the menu in Inf2b page on Learn, and choose “Assignment Sub-
mission”. Upload the archive file, inf2b-cw-UUN.tar.gz, and click the ’submit’ button at the
bottom-right corner of screen. If the submission is successful, you should receive a confirmation
message from the system via email. For details and for any troubles, please see the following
blog post:

https://blogs.ed.ac.uk/ilts/2019/09/27/assignment-hand-ins-for-learn-guidance-for-students/

You may resubmit your work as many times as you like until the deadline, but please note that
only the last submission before the deadline is considered for assessment and the others are ignored.
This means if your last submission does not contain all the necessary files, but some updated files
only, your submission is treated as incomplete.

6 Before you run the command in a terminal window, make sure that you are in the right current directory - the parent
directory of LearnCW, i.e. the directory that has LearnCW as a sub directory.

https://blogs.ed.ac.uk/ilts/2019/09/27/assignment-hand-ins-for-learn-guidance-for-students/

	Outline
	Data
	Data for Task 1
	Data for Task 2

	Task specifications
	Functions that are not allowed to use
	Submission

