Inf2B Coursework (Ver. 0.9)

Submission due: 4pm, Friday 3rd April 2020

Hiroshi Shimodaira

1 Outline

The coursework consists of two tasks, Task 1 — data analysis and classification with multivariate
Gaussian classifiers, Task 2 — neural networks.

You are required to submit (i) two reports, one for each Task, (ii) code, and (iii) results of exper-
iments if specified, using the electronic submission command. Details are given in the corresponding
task sections below. Some of the code and results of experiments submitted will be checked with
an automated marking system in the DICE computing environment, so that it is essential that you
follow the syntax of function and file format specified. No marks will be given if it does not meet
the specifications. Some helper tools to check your files and function template files will be provided.
Please check the following coursework web-page frequently to see any updates.

https://www.inf.ed.ac.uk/teaching/courses/inf2b/coursework/cwk.html
Efficiency of code and programming style (e.g. comments, indentation, and variable names) count.
Those pieces of code that do not run or that do not finish in approximately five minutes on a standard
DICE machine will not be marked. This coursework is out of 100 marks and forms 25% of your final
Inf2b grade.

This coursework is individual coursework - group work is forbidden. You should work alone to
complete the coursework. You are not allowed to show any written materials, the data provided to
you, results of your experiments, or code to anyone else. This includes posting your coursework to
the internet and making it accessible to other people not only during the coursework period, but also
after that. Never copy-and-paste material of other people (including those available on the internet)
into your coursework and edit it. You can, however, use the code provided in the lecture notes, slides,
and labs of this course, excluding some functions described later. High-level discussion that is not
directly related to this coursework is fine.

Please note that assessed work is subject to University regulations on academic misconduct:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
For late coursework and extension requests, see the page: http://web.inf.ed.ac.uk/infweb/student-services/
ito/admin/coursework-projects/late-coursework-extension-requests
Note that any extension request must be made to the ITO, and not to the lecturer.

Programming: Write code in Matlab(R2018a)/Octave or Python(version 3.6)+Numpy-+Scipy+Matplolib.
Your code should run on standard DICE machines without the need of any additional software. There
are some functions that you should write the code by yourself rather than using those of standard
libraries available. See section 4 for details.

This document assumes programming in Matlab. For Python, put all the specified functions into
a single file for each Task, so that taskl.py for Task 1, and task2.py for Task 2. Output data should
be stored in Matlab’s MAT binary format.

2 Data

2.1 Data for Task 1

The coursework employs the Anuran Calls (MFCCs) Data Set introduced by J. Colonna etal..!
Your data set file, 'dset.mat', which is a subset of the original data set, should be found in your
coursework data directory (denoted as YourDataDir hereafter) :

1https://doi.org/lo.1007/978—3—319—46307—0_13

https://www.inf.ed.ac.uk/teaching/courses/inf2b/coursework/cwk.html
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
https://doi.org/10.1007/978-3-319-46307-0_13

3 Task specifications 2

/afs/inf.ed.ac.uk/group/teaching/inf2b/cwk/d/UUN/

where UUN denotes your UUN (DICE login name).
You can use Matlab’s 1load () function to load the data set in the following manner:

load (pathname) ;

where pathname denotes the absolute pathname of your data set file. Once you load the data set, you
will find the following variables.

Matlab variable (Class) Description

X|N, D] (double)) feature vectors
Y_family[N,1] (int32) family class labels
Y_genus|N,1] (int32) genus class labels
Y_species|N,1] (int32) species class labels
list_family[4,1] (cell) family class names
list_genus|8,1] (cell) genus class names

list_species[10,1] (cell) species class names

where N and D denotes the total number of samples and the dimension of feature vector (D=24),
respectively.

Among the three different levels of taxonomic rank provided in the original data set, we use ’species’
in the coursework. There are ten different species, so that the number of classes for classification is
ten, i.e., C' = 10. The variable, Y_species(i), contains the integer number that corresponds to the
species of i-th sample, whose feature vector is X(i, :). Hereafter, Y denotes Y_species.

The variable, 1ist_species, holds the list of species names.

The following table shows the number of samples for each species in the original data set, which

may be different from the number samples in your data set.

Family ‘ Genus ‘ Species ‘ # of samples
Leptodactylidae | Leptodyctylus | Leptodactylus fuscus 222
Adenomera Adenomera andreae 496

Adenomera hylaedactyla 3049

Hylidae Dendropsophus | Hyla minuta 229
Scinax Scinax ruber 96

Osteocephalus | Osteocephalus oophagus 96

Hypsiboas Hypsiboas cinerascens 429

Hypsiboas cordobae 702

Bufonidae Rhinella Rhinella granulosa 135
Dendrobatidae | Ameerega Ameerega trivittata 544

The data set has not been split in two sets for training and testing. You need to split the data set
according to the instructions described later.

2.2 Data for Task 2

The data for Task 2 is stored in the plain-text file named 'task2_data.txt' in YourDataDir. For
details, see the Task 2 specifications.

3 Task specifications
Taskl — Anuran-Call analysis and classification [50 marks]

Task 1.1 [5> marks]

(a) Write a Matlab function task1_1() that

e calculates the covariance matrix, S and correlation matrix, R, for the whole data set X,
using the maximum likelihood estimation (MLE),

e saves S as 't1_S.mat',

3 Task specifications 3

e saves R as 't1_R.mat'.

Save the code as 'task1_1.m'. Note that, hereafter, function and file names are case sensi-
tive, and your code should save output files in the current working directory. The syntax
of the function should be as follows.

function taski1_1(X, Y)
where

X N-by-D matrix of feature vector (of floating-point numbers in
double-precision format, which is the default in Matlab), where
N is the number of samples, and D is the the number of elements
in a sample. Note that each sample is represented as a row vector
rather than a column vector.

Y N-by-1 label vector (of int32) for X. Y(i) is the class number of
X(i,:).

(b) Run the following:
function task1_1(X, Y)

Make sure that the two output files are created properly. It will be a good idea that you
write a script to run the above.

Task 1.2 [5 marks]
Look into the correlation matrix, R, you obtained, and describe your findings in your report,
using graphs.

Task 1.3 [10 marks]

(a) Write a Matlab function task1_3() that
e calculates the eigenvectors, EVecs and eigenvalues, EVals, of a covariance matrix, and
calculates the cumulative variance, Cumvar,

e finds the minimum number of PCA dimensions to cover each 70%, 80%, 90%, 95% of
the total variance, and store the values to a vector MinDims,

e saves the eigenvectors to a file named 't1_EVecs.mat',

e saves the eigenvalues to a file named 't1_EVals.mat',

e saved the cumulative variances to a file named 't1_Cumvar.mat’,

e saves the the numbers of minimum dimensions, MinDims, to a fle named 't1_MinDims.mat',

Save the function as 'task1_3.m'.
The syntax of the function should be as follows.

function task1_3(Cov)

where Cov is a D-by-D covariance matrix (double).
The specifications of the variables are as follows.

EVecs D-by-D matrix (in double)

EVals D-by-1 vector (in double)

Cumvar D-by-1 vector (in double)

MinDims 4-by-1 vector (in int32)
The eigenvalues should be sorted in descending order, so that A; is the largest and Ap is
the smallest, and ¢’th column of EVecs should hold the eigenvector that corresponds to \;.
Eigenvectors are not unique by definition in terms of scale (length) and sign, but we make
them unique in this coursework by putting the following additional constraints, which your
program should employ.

e The first element of each eigenvector is non-negative. If it is not the case, i.e. if the
first element is negative, multiply -1 to the eigenvector (i.e. v < —v) so that it gets
the opposite direction.

e Each eigenvector is a unit vector, i.e. |v|| =1, where v denotes an eigenvector. As
far as you use Matlab’s eig() or Python’s numpy.linalg.eig(), you do not need to care
about this, since either function ensures unit vectors.

3 Task specifications 4

(b) Run the following:
task1_3(S);
In your report, show a graph of cumulative variance.

(c) Plot all data on a 2D-PCA plane, clarifying data of different classes, and show the graph
in your report.

Task 1.4 [25 marks]

(a) Write a Matlab function taskl mgc_cv() that carries out a classification experiment with
multivariate Gaussian classifiers, using k-fold cross validation, and save the code as 'taskl mgc_cv.m'.
The syntax of the function is as follows

function taskl mgc_cv(X, Y, CovKind, epsilon, Kfolds)

where CovKind is the type of covariance matrix - 1 for full covariance matrix, 2 for diagonal
covariance matrix, and 3 for shared covariance matrix, epsilon is a scalar (double) for the
regularisation of covariance matrix described in Lecture 8, in which we add a small positive
number (e) to the diagonal elements of covariance matrix, i.e. 3 <« X + eI, where [is
the identity matrix, Kfolds is the number of folds (partitions) in k-fold cross validation.
Assume a uniform prior distribution over class, and use MLE for the estimation of model
parameters.

At first, the function should split the data set in Kfolds partitions for cross validation,
whose information is stored in a N-by-1 vector, PMap, where PMap (i) holds the partition
number that i-th sample is assigned to, and save it to a file named 't1_mgc_<Kfolds>cv_PMap.mat',
where <Kfolds> is the number of folds.

For each fold, p, the function should

e estimate the mean vector and covariance matrix for each class from the samples that
do not belong to partition p.

e save the mean vectors ((Ms)to 't1_mgc_<Kfolds>cv<p>_Ms.mat',

e save the covariance matrices (Covs) to 't1_mgc_<Kfolds>cv<p>_ck<CovKind>_Covs.mat',

e carry out a classification experiment using the samples of partition p, and save the
confusion matrix (CM) to 't1 mgc_<Kfolds>cv<p>_ck<CovKind> CM.mat',

e calculate the final confusion matrix (where each element is a relative frequency) and
save it to 't1 mgc_<Kfolds>cv<L>_ck<CovKind> CM.mat', where L = Kfolds + 1.

In the above, replace <p>, <Kfolds>, <CovKind>, and <L> with the actual values.

Details of partitioning algorithm for k-fold cross validation and the variables to save will
be specified in a separate sheet.

(b) Run the function with epsilon=0.01 and Kfolds=5 for each CovKind=1,2,3, and report
the accuracy (correct classification rate) in your report.

Task 1.5 [5 marks]
Using CovKind=1 (i.e. full covariance), investigate how the classification accuracy changes with
respect to the regularisation parameter, epsilon. Plot a graph and describe your findings in
your report.

Task 2 — Neural networks [50 marks]

In this task, you implement neural networks for binary classification problems, in which input feature
is represented as a two-dimensional vector (z1,72)7. We assume that decision regions are defined
with polygon(s), whose specifications are given in the polygon specification file 'task2_data.txt'?in
YourDataDir. The file is a plain-text file, in which each line specifies the name of the polygon and
the coordinates of its vertices {(zp, l’p2)}5:1, where P is the number of vertices. The following is an
example of the file.

2 You are not allowed to show this file of yours to anyone else.

3 Task specifications 5

Polygon_A: -1-0.561.2566.2516
Polygon B: 2.533.533.53.52535

where two polygons, Polygon_A and Polygon_B, are defined. In each line, the first two numbers (e.g.
-1 and -0.5 for Polygon_A) from the left specify the coordinates (x11,x12) of the first vertex, followed
by the coordinates (z21,222) for the second vertex, and so one. You will see that each polygon has
four vertices, meaning a quadrangle in this case.

Task 2.1 [3 marks]

Consider a single neuron with a unit function, whose output is defined as y(x) = h(w’x), where
h(a) is a step function such that h(a) = 1 if @ > 0, and h(a) = 0 otherwise 3. Implement this
neuron as a Matlab function:

function [Y] = task2_hNeuron(W, X)

where X is a N-by-D data matrix (double), W is a (D+1)-by-1 weight matrix (double), Y is a
N-by-1 output vector (double). Save the function as 'task2_hNeuron.m'.

Note that this function can take more than one input vector stored in a matrix X, where each
input vector is represented as a row vector rather than a column one, and gives corresponding
output as a vector Y.

Task 2.2 [3 marks]
Similar to task2_hNeuron() above, but consider another neuron which employs the logistic

sigmoid function g(a) = m. Implement this neuron as a Matlab function:

function [Y] = task2_sNeuron(W, X)
and save it as 'task2_sNeuron.m'.

Task 2.3 [8 marks]
Find the structure (i.e. connection of neurons) and weights of the neural network that classifies
the inside and periphery of Polygon A as Class 1 (i.e. y(x) = 1), and the outside as Class 0
(i.e. y(x) = 0), where each neuron is modelled with task2_hNeuron().

This task is meant for you to work using pen and paper (and calculator), but it is also fine that

you write a piece of code to find the weights. If it is the case, save the script or function as
'task2_find hNN_A weights.m'.

Let wfi denote the weight of neuron j in layer ¢ from neuron i in layer /—1 4. Normalise your

weights in such a way that max; \wfi] = 1. Write the weights in a plain text file 'task2 hNN_A_weights.txt'
in the following format.

You write each wfi in a separate line, for / =1,..., j=1,...,and ¢ = 0,1, ..., so that the first line

contains wi, followed by w{; and w], in the second line and the third line, respectively. The
format of each line should be as follows:

W(L,j,i) : <the value of w§i>

where “<the value of w§i>” is the actual value of the weight. For example, if w%o = 0.35, the
first line should look like this:
wW(1,1,0) : 0.35

[

Spaces are only allowed just before and after “:”, and none in other places.

In your report, show the structure of the network and explain how you found the weights.

Task 2.4 [5 marks]
Implement the neural network above as a function:

3 NB: The step function defined here is slightly different from the one in the lectures.
4 The input layer where input date are fed is regarded as layer 0 (zero). The output node of a single-layer neural
network is in layer 1.

4 Functions that are not allowed to use 6

function [Y] = task2_hNN_A(X)

and save it as 'task2_hNN_A.m', where X and Y follow the same format as was shown in Task
3.1.

Task 2.5 [4 marks]
Using task2 hNN_A(), write a script that plots the decision regions in a 2D space, and save the

code as 'task2_plot_regions_hNN_A.m'. Save the graph as a PDF file named 't2_regions hNN_A.pdf'.

Task 2.6 [6 marks]
We now consider the decision regions formed with Polygon_A and Polygon_B, whose classification
rule is shown below:

Class1: ANB
Class0: AUB

where A and B denote the inside and periphery of the corresponding polygon, B denotes the
complement of B.

Implement the corresponding neural network as a function:
function [Y] = task2_hNN_AB(X)
and save it as 'task2_hNN_AB.m'. Note that each neuron should be modelled with task2_hNeuron().

Task 2.7 [4 marks]
Using task2 hNN_AB(), write a script that plots the decision regions in a 2D space, and save the

code as 't2_plot_regions_hNN_AB.m'. Save the graph as a PDF file named 't2_regions_hNN_AB.pdf'.

Task 2.8 [5 marks]

We now consider another network task2_sNN_AB() obtained by replacing all nodes of task2_hNeuron()

with those of task2_sNeuron() in task2 hNN_AB(), so that each neuron is now modelled with
task2_sNeuron(). Implement the neural network as a function:

function [Y] = task2_sNN_AB(X)

and save it as 'task2_sNN_AB.m'. Note that you will need to modify the weights to approximate
the decision regions properly.

Task 2.9 [4 marks]
Using task2_sNN_AB(), write a script that plots the decision regions in a 2D space, and save the

code as 'task2_plot_regions_sNN_AB.m'. Save the graph as a PDF file named 't2_regions_sNN_AB.pdf'.

Task 2.10 [8 marks]
Investigate and discuss the decision regions for task2_sNN_AB(), clarifying how and why they
are different from those for task2 hNN_AB().

4 Functions that are not allowed to use

Since one of the objectives of this coursework is to understand and implement basic algorithms for
machine learning, you are not allowed to use those functions in standard libraries listed below. You
should write the code by yourself using the basic operations of arithmetic for scalars, vectors, and
matrices. If it is the case, use a different function name from the original one in standard libraries
(e.g. MyCov() for cov() as shown in the table below). You may, however, use them for comparison
purposes, i.e. to check your code.

5 Submission 7

Description of function Typical names Suggested name to implement

Pairwise (squared) Euclidean distance pdist2() MySqDist ()

Compute the mean mean() MyMean()

Compute the covariance matrix cov() MyCov()

Compute Gaussian probability densities mvnpdf()

K-NN classification fitcknn() run_knn_classifier()
K-means clustering kmeans() my_kMeansClustering()
Compute confusion matrix confusion() comp_confmat/()

Other utilities for classification

You may use those functions or operations:

Description Typical names
Sum function sum/()
Cumulative sum cumsum()
Square root function sqrt()
Exponential function e, exp()
Logarithmic function log(), In()
Matrix transpose transpose(), '
Matrix inverse inv()
Determinant det()

Log determinant logdet() --- available in Inf2b cwk directory
Eigen values/vectors eig()

Sort sort ()

Sample mode mode()

Vectorisation helpers

bsxfun(), arrayfun()

(NB: the list is not exhaustive)

5 Submission

You should submit your work electronically via the DICE submit command by the deadline. No
submission of printed document is required.

Since marking for each task will be done separately, you should prepare separate reports for
the two tasks, and save your report files in PDF format and name them 'report_taskl.pdf' and
'report_task2.pdf'. Remember to place your student number and the task name prominently at the
top of each report. Do not indicate your name anywhere. Your report should be concise and brief for
each task.

Create a directory named LearnCW, copy all of the requested files to the directory, but do NOT
put the data set files in it.

A checklist will be available from the coursework web page. Submit your coursework from a DICE
machine using;:

submit inf2b cwl LearnCW

	Outline
	Data
	Data for Task 1
	Data for Task 2

	Task specifications
	Functions that are not allowed to use
	Submission

