Inf2B Coursework 2 (Ver. 1.1)
Submission due: 4pm, Friday 6th April 2018

Hiroshi Shimodaira and Heru Praptono

1 Outline

The coursework consists of three tasks, Task 1 — K-NN classification, Task 2 — Bernoulli naive Bayes
classification, and Task 3 — Bayes classification with Gaussian distributions, in which we use a data
set of handwritten characters.

You are required to submit (i) three reports, one for each task, (ii) code, and (iii) results of exper-
iments if specified, using the electronic submission command. Details are given in the corresponding
task sections below. Some of the code and results of experiments submitted will be checked with
an automated marking system in the DICE computing environment, so that it is essential that you
follow the syntax of function or file format specified. No marks will be given if it does not meet the
specifications. Efficiency of code and programming style (e.g. comments, indentation, and variable
names) count. Those pieces of code that do not run or that do not finish in approximately five minutes
on a standard DICE machine will not be marked. This coursework is out of 100 marks and forms
12.5% of your final Inf2b grade.

This coursework is individual coursework - group work is forbidden. You should work alone to
complete the coursework. You are not allowed to show any written materials, data provided to
you, results of your experiments, or code to anyone else. Never copy-and-paste material into your
coursework and edit it. You can, however, use the code provided in the lecture notes, slides, and
labs of this course, excluding some functions described later. High-level discussion that is not directly
related to this coursework is fine.

Please note that assessed work is subject to University regulations on academic misconduct:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
For late coursework and extension requests, see the page: http://web.inf.ed.ac.uk/infweb/student-services/
ito/admin/coursework-projects/late-coursework-extension-requests

Note that any extension request must be made to the ITO, and not to the lecturer.

Programming: Write code in Matlab(R2015a)/Octave or Python(version 2.7)+Numpy+Scipy. Your
code should run on standard DICE machines without the need of any additional software. There are
some functions that you should write the code by yourself rather than using those of standard libraries
available. See section 4 for details.

This document assumes Matlab programming. For Python, replace the Matlab filename extension
(.m) with the one for Python (.py) for function/script files, but this does not apply to other files (e.g.
data sets and results of experiments).

2 Data

The coursework employs the EMNIST handwritten character data set https://www.nist.gov/itl/
iad/image-group/emnist-dataset. Each character image is represented as 28-by-28 pixels in gray
scale, being stored as a row vector of 784 elements (28 x 28 = 784). A subset of the original EMNIST
data set is considered in the coursework, restricting characters to English alphabet of 26 letters in
either upper case or lower case.

You data set is stored in a Matlab file named 'data.mat' and located in your coursework-data
directory (denoted as YourDataDir hereafter) :

/afs/inf.ed.ac.uk/group/teaching/inf2b/cwk2/d/UUN/data.mat

where UUN denotes your UUN (DICE login name).

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests
https://www.nist.gov/itl/iad/image-group/emnist-dataset
https://www.nist.gov/itl/iad/image-group/emnist-dataset

3 Task specifications 2

There are 1800 training samples and 300 test samples for each class. You can load the data set
file in Matlab with the ’load’ function, e.g. loading the training set by:

load (' YourDataDir/data.mat') ;
which contains the following arrays/vectors:

Name Size (Class) Description
dataset.train.images 46800x784 (uint8) training samples
dataset.train.labels ~ 46800x1 (double) class labels of training samples
dataset.test.images ~ 7800x784 (uint8) test samples
dataset.test.labels 7800x1 (double) class labels of test samples

Each pixel value is represented as an unsigned byte integer (uint8) with the range in [0, 255]. Note
that, after you load the data in your program, you should at first convert the image data to floating
point (double) numbers. Additionally, for Task 1 and Task 3, you should divide the numbers by 255.0
so that the maximum value is less than or equal to 1.0.

A class label is represented as an integer number between 1 and 26, where 1 denotes A’ and 26
'Z’, respectively. The data set is supposed to contain letters in either upper case or lower case only,
but you should expect that the actual data set allocated to you may contain both.

3 Task specifications
Taskl — K-NN classification [35 marks]

Taskl.1 Write a Matlab function for k-NN classification with the (squared) Euclidean distance mea-
sure, and save it as 'Taskl/my knn classify.m'. (NB: file names and function names are case
sensitive) The syntax of the function should be as follows.

[Cpreds] = my knn classify(Xtrn, Ctrn, Xtst, Ks)
where

Xtrn M-by-D training data matrix (of floating-point numbers in double-
precision format, which is the default in Matlab) of training data,
where M is the number of training samples, and D is the the number
of elements in a sample. Note that each sample is represented as a
row vector rather than a column vector.

Ctrn M-by-1 label vector for Xtrn. Ctrn(i) is the class number of

Xtrn(i,:).
Xtst N-by-D test data matrix, where NV is the number of test samples.
Ks L-by-1 vector of numbers of nearest neighbours.

Cpreds N-by-L matrix of predicted class labels for Xtst. Cpreds(i, j) is the
predicted class for Xtst (i, :) with the number of nearest neighbours
being Ks (j).

In case of ties (where there is more than one majority group), choose the smallest index (class
label).

[15 marks]

Taskl.2 Write a Matlab function for creating a confusion matrix, and save it as 'Task1/my_confusion.m'.
The syntax of the function should be as follows.

[CM, acc] = my_confusion(Ctrues, Cpreds)

where

3 Task specifications 3

Ctrues N-by-1 vector of ground truth (target) class labels

Cpreds N-by-1 vector of predicted class labels

CM K-by-K confusion matrix, where CM(i,j) is the number of samples
whose target is the i’th class that was classified as j. K is the number
of classes, which is 26 for the data set.

acc A scalar variable representing the accuracy (i.e. correct classification
rate) with the range in [0, 1].

[5 marks]
Task1.3

(a) Write a Matlab script that carries out k-NN classification for the the given data set, and
save the script as 'Task1/my_knn_system.m'. The specifications of the script are as follows.
e Loads the data set.
e Runs a classification experiment on the data set, calling the classification function
(my _knn_classify) with Ks = [1,3,5,10,20]".
e Measures the user time taken for the classification experiment, and display the time
(in seconds) to the standard output (i.e. display).

e Saves the confusion matrix for each k to a matrix variable cm, and save it with the
file name 'Task1/cmk.mat', where k denotes the number of nearest neighbours (i.e. k)
specified above. For example, assuming that your current directory is Taskl and k=3,

save(’cm3.mat’, ’cm’);.

e Displays the following information (to the standard output).

k The number of nearest neighbours

N The number of test samples

Nerrs The number of wrongly classified test samples
acc Accuracy (i.e. correct classification rate)

(b) Run the script 'Task1/my knn system.m' on a DICE machine, and report the user time
taken and result shown on the display for each value of k in Ks. The result of experiment
should be shown in a table.

[10 marks]

Taskl.4 In your report, explain your implementation of k-NN classification in terms of speeding up,
using mathematical expressions if possible. For example, nested loops are required for the
algorithm to calculate distance for possible pairs of training samples and test samples, but
the loop operation can be avoided or the number of loops can be reduced with vectorisation
techniques.

[5 marks]

Task 2 — Bernoulli naive Bayes classification [30 marks]

This task considers naive Bayes classification with multivariate Bernoulli distributions. To that end,
we convert an original pixel image vector x = (x1,...,2p)’ to a binary image vector b = (by,...,bp)7,
where b; is a binary value of either 0 or 1, and D = 784 for the EMNIST data set. This conversion is
called binarisation.

The likelihood for class C}, is given as follows.

P(b|Cy) = T2, P(b;|Cy) = T2, P(b;=0|Cy)' " P(b;=1|Cy)"
A uniform prior distribution over class is assumed for the data set.

Task2.1 Write a Matlab function for the classification and save the code as 'Task2/my_bnb_classify.m'.
The syntax of the function should be as follows.

[Cpreds] = my_bnb_classify(Xtrn, Ctrn, Xtst, threshold)

3 Task specifications 4

where Xtrn, Ctrn, and Xtst are the same as those in Taskl.

threshold A scalar value for binarisation, where b; = 0 if x; < threshold, 1
otherwise.

Cpreds N-by-1 vector of predicted class labels for Xtst. Cpreds(i) is the
predicted class for Xtst(i,:).

Note that the binarisation should be carried out in this function.
[15 marks]

Task2.2

(a) Write a Matlab script that carries out the classification for the the given data set, and save
the script as 'Task2/my_bnb_system.m'. The specifications of the script are as follows.
Loads the data set.
Run a classification experiment on the data set, calling the classification function
(my_bnb_classify) with threshold=1.
e Measures the user time taken for the classification experiment, and display the time
(in seconds) to the standard output.

Obtains the confusion matrix using my_confusion(), stores the confusion matrix to a
matrix variable cm, and saves it with the file name 'Task2/cm.mat'.

e Displays the following information (to the standard output).
N The number of test samples
Nerrs The number of wrongly classified test samples
acc Accuracy (i.e. correct classification rate)

(b) Run the script 'Task2/my_bnb_system.m' on a DICE machine, and report the result in your
report using a table that shows the information of user time taken, N, Nerrs, and acc.

[10 marks]

Task2.3 Investigate the effect of the threshold on classification accuracy, and report your findings in
the report.

[5 marks]

Task 3 — Bayes classification with Gaussian distributions [35 marks]

In this task, we consider Bayes classification with Gaussian distributions, where each class is modelled
with a multivariate Gaussian distribution. Due to the nature of the data we use, it is likely that
the determinant of a covariance matrix is zero or almost zero, and the matrix is not invertible. To
avoid the problem, we employ the simple regularisation technique shown in Lecture 8 (multivariate
Gaussians and classification), in which we add a small positive number (¢€) to the diagonal elements of
covariance matrix, i.e. 3 <— 3 + €l, where [is the identity matrix. In addition to the regularisation,
you should calculate determinants and likelihoods in the log domain to avoid numerical underflow.

In the following classification experiments, assume a uniform prior distribution over class, and use
the mazimum likelihood estimation (MLE) to estimate model parameters.

Task3.1 Write a Matlab function for the classification with a single Gaussian distribution per class,
and save the code as 'Task3/my_gaussian _classify.m'. The syntax of the function should be
as follows.

[Cpreds, Ms, Covs] = my_gaussian_classify(Xtrn, Ctrn, Xtst, epsilon)

where Xtrn, Ctrn, Xtst, and Cpreds are the same as those in Task2, and epsilon is a scalar
for the regularisation described above.

Ms D-by-K matrix of mean vectors, where Ms(:,k) is the sample mean
vector for class k.

Covs D-by-D-by-K 3D array of covariance matrices, where Cov(:,:,k) is
the covariance matrix (after the regularisation) for class k.

4 Functions that are not allowed to use 5

[15 marks]
Task3.2

(a) Write a Matlab script that carries out the classification for the given data set, and save the
script as 'Task3/my_gaussian_system.m'. The specifications of the script are as follows.
e Loads the data set.
e Calls the classification function with epsilon=0.01.

e Measures the user time taken for the classification experiment, and display the time
(in seconds) to the standard output.

e Obtains the confusion matrix, stores it to a matrix variable cm, and saves it with the
file name 'Task3/cm.mat'.

e Saves the mean vector and covariance matrix for Class 26, i.e, Ms(:,26) and Covs(:,:,26),
to files with the file names 'Task3/m26.mat' and 'Task3/cov26.mat', respectively.

e Displays the following information (to the standard output).

N The number of test samples
Nerrs The number of wrongly classified test samples
acc Accuracy (i.e. correct classification rate)

(b) Run the script 'Task3/my_gaussian_system.m' on a DICE machine, and report the result
in your report using a table that shows the information of N, Nerrs, and acc.

[5 marks]

Task3.3 This is a mini project in which you try to improve classification accuracy by modifying
the classifier developed in Task3.1, and write a short report about your investigation. The new
classifier needs to be still in the the framework of Bayes classification with Gaussian distributions,
but you can adopt techniques covered in the Inf2b course. For example, using the k-means
clustering algorithm to obtain multiple Gaussian distributions per class, and dimensionality
reduction with PCA may be worth exploring.

(a) Write a Matlab function for the improved classifier, and save the code as
'Task3/my_improved _gaussian_classify.m'. The syntax of the function should be as fol-
lows.

[Cpreds] = my_improved_gaussian classify(Xtrn, Ctrn, Xtst)

where Xtrn, Ctrn, Xtst, and Cpreds are the same as described before. You may add
arguments to the function if necessary.

(b) Write a Matlab script that carries out the classification for the given data set, and save the
script as 'Task3/my_improved _gaussian_system.m'. The specifications of the script are ba-
sically the same as in Task3.2, but the confusion matrix should be saved as 'Task3/cm_improved.mat'.

c¢) In your report, describe your investigation, clarifying the methods you employed, and re-

I t, describ i tigati larifying th thod loyed, and
port the results of experiment. Give discussions as to remaining problems and further
improvement.

[15 marks]

4 Functions that are not allowed to use

Since one of the objectives of this coursework is to understand and implement basic algorithms for
machine learning, you are not allowed to use those functions in standard libraries listed below. You
should write the code by yourself using the basic operations of arithmetic for scalars, vectors, and
matrices. If it is the case, use a different function name from the original one in standard libraries
(e.g. MyCov() for cov() as shown in the table below). You may, however, use them for comparison
purposes, i.e. to check your code.

5 Submission 6

Description of function Typical names Suggested name to implement
Pairwise (squared) Euclidean distance pdist2() MySqDist ()

Compute the mean mean() MyMean()

Compute the covariance matrix cov() MyCov()

Compute Gaussian probability densities mvnpdf()

K-NN classification fitcknn() my_knn_classify()

K-means clustering kmeans() MyKmeans()

Compute confusion matrix confusion|() my _confusion()

Other utilities for classification

You may use those functions or operations:

Description Typical names
Sum function sum/()
Cumulative sum cumsum()

Square root function sqrt()
Exponential function e, exp()
Logarithmic function log(), In()

Matrix transpose transpose(), '

Matrix inverse inv()

Determinant det()

Log determinant logdet() --- available in Inf2b cwk2 directory
Eigen values/vectors eig()

Sort sort ()

Sample mode mode()

Vectorisation helpers bsxfun(), arrayfun()
(NB: the list is not exhaustive)

5 Submission

You should submit your work electronically via the DICE submit command by the deadline. No
submission of printed document is required.

Since marking for each task will be done separately, you should prepare separate reports for
the three tasks, and save your report files in PDF format and name them 'report_taskl.pdf',
'report_task2.pdf', and 'report_task3.pdf'. Remember to place your student number and the
task name prominently at the top of each report. Do not indicate your name anywhere. Your report
should be concise and brief, 1 or 2 pages long, for each task.

Create a directory named LearnCW, copy the PDF files of your reports in it. Create sub directories,
Task1, Task2, and Task3, under LearnCW, and copy all of your code for each task to the corresponding
sub directory.

Make sure that each task directory contains necessary pieces of code (with the correct names —
file/directory names are case sensitive) so that coursework markers can run your code on DICE without
the need of modifications. A checklist will be available from the coursework web page. Submit your
coursework from a DICE machine using:

submit inf2b cw2 LearnCW

	Outline
	Data
	Task specifications
	Functions that are not allowed to use
	Submission

