Trees and Forests

Definition: A tree is a connected graph without any cycles (disregarding directions of edges).

Note: In computing we use rooted trees, i.e., a distinguished vertex is chosen as the root.

Definition: A forest is a collection of trees.

DFS Forests:
A DFS traversing a graph builds up a forest:
- vertices are all vertices of the graph,
- edges are those traversed during the DFS.

DFS Forests Example

Reminder: Recursive DFS

Algorithm $\text{dfs}(G)$
1. Initialise Boolean array visited by setting all entries to FALSE
2. for all $v \in V$
3. \hspace{1em} if not $\text{visited}[v]$ then
4. \hspace{2em} $\text{dfsFromVertex}(G, v)$

Algorithm $\text{dfsFromVertex}(G, v)$
1. $\text{visited}[v] \leftarrow \text{TRUE}$
2. for all w adjacent to v
3. \hspace{1em} if not $\text{visited}[w]$ then
4. \hspace{2em} $\text{dfsFromVertex}(G, w)$

Runtime: $T(n, m) = \Theta(n + m)$, using Adjacency List representation.
Connected components of an undirected graph

\[G = (V, E) \text{ undirected graph} \]

Definition

- A subset \(C \) of \(V \) is **connected** if for all \(v, w \in C \) there is a path from \(v \) to \(w \) (if \(G \) is directed, say **strongly connected**).
- A **connected component** of \(G \) is a **maximal connected subset** \(C \) of \(V \).
 - **Maximal** means no connected subset \(C' \) of \(V \) strictly contains \(C \).
- \(G \) is **connected** if it only has one connected component, i.e., if for all vertices \(v, w \) there is a path from \(v \) to \(w \).

Algorithm \(\text{connComp}(G) \)

1. Initialise Boolean array \(\text{visited} \) by setting all entries to \(\text{FALSE} \)
2. for all \(v \in V \) do
3.
4. if \(\text{visited}[v] = \text{FALSE} \) then
5. print “New Component”
6. ccFromVertex\((G, v)\)

Algorithm \(\text{ccFromVertex}(G, v) \)

1. \(\text{visited}[v] \leftarrow \text{TRUE} \)
2. print \(v \)
3. for all \(w \) adjacent to \(v \) do
4. if \(\text{visited}[w] = \text{FALSE} \) then
5. ccFromVertex\((G, w)\)
Topological Sorting

Example:
10 tasks to be carried out. Some of them depend on others.

- Task 0 must be completed before Task 1 can be started.
- Task 1 and Task 2 must be done before Task 3 can start.
- Task 4 must be done before Task 0 or Task 2 can start.
- Task 5 must be done before Task 0 or Task 4 can start.
- Task 6 must be done before Task 4, 5 or 7 can start.
- Task 7 must be done before Task 0 or Task 9 can start.
- Task 8 must be done before Task 7 or Task 9 can start.
- Task 9 must be done before Task 2 or Task 3 can start.

Example (continued)

![Diagram of a directed graph](image)

Does this graph have a topological order?

Yes, the topological sort is:

\[8 \prec 6 \prec 7 \prec 9 \prec 5 \prec 4 \prec 2 \prec 0 \prec 1 \prec 3. \]

Topological order

Definition

Let \(G = (V, E) \) be a directed graph. A topological order of \(G \) is a total order \(\prec \) of the vertex set \(V \) such that for all edges \((v, w) \in E\) we have \(v \prec w \).

Topological order (continued)

A digraph that has a cycle does not have a topological order.

Definition

A DAG (directed acyclic graph) is a digraph without cycles.

Theorem

A digraph has a topological order if and only if it is a DAG.
Classification of vertices during DFS

Let G be a graph and v a vertex of G. Consider the moment during the execution of $\text{dfs}(G)$ when $\text{dfsFromVertex}(G, v)$ is started. Then for all vertices w we have:

1. If w is white and reachable from v, then w will be black before v.
2. If w is grey, then v is reachable from w.

Lemma

Let G be a graph and v a vertex of G. Consider $\text{dfs}(G)$.

Algorithm $\text{topSort}(G)$

1. Initialise array state by setting all entries to white.
2. Initialise linked list L
3. for all $v \in V$ do
 4. if $\text{state}[v] = \text{white}$ then
 5. $\text{sortFromVertex}(G, v)$
5. print L
Algorithm sortFromVertex(G, v)

1. $\text{state}[v] \leftarrow \text{grey}$
2. for all w adjacent to v do
3. \hspace{1em} if $\text{state}[w] = \text{white}$ then
4. \hspace{2em} sortFromVertex(G, w)
5. \hspace{1em} else if $\text{state}[w] = \text{grey}$ then
6. \hspace{2em} print “G has a cycle”
7. \hspace{1em} halt
8. $\text{state}[v] \leftarrow \text{black}$
9. $L.\text{insertFirst}(v)$